C Numerical Calculation of Carrier Trajectories

Mutationem motus proportionalem esse vi
motrici impressae, et fieri secundum lineam
rectam qua vis illa imprimitur.

(Sir Isaac Newton, Pricipia Mathematica)

Electron trajectories in an arbitrary electrostatic potential V' (r) can be simulated by numer-
ically integrating the semiclassical equations of motion [1]

1
h
hk = —e[E(r) + t x B(r)], (C.2)
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where r and k denote position and crystal momentum, E (k) is the energy dispersion, g the
charge, E(r) = — V, V(r) the electric field, and B(r) the magnetic field. The equations of
motion for electron holes with energy E;, (k) are obtained by replacing E(k) by —E; (k) in
Eq. (C.1) and —e by e in Eq. (C.2) [2].

Integrating the equations of motion of one or more particles is an ubiquitous problem,
and a number of general algorithms have been developed for this purpose, particularly in
the context of molecular dynamics simulations. For the present work I have chosen an ap-
proach based on Beeman’s algorithm [3], which gives both position and momentum up to

third order in the time step and provides for improved energy conservation compared to the
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unmodified Verlet algorithm. In this scheme, the position and momentum at the next time

step are
r(t+0t) = r(t) + ¥(£)dt + 2'1"81‘2 - %i‘(t —8t)8f  and (C.3)
k(t+8t) =k(t)+ %k(t +0t)8t + zk(t)c?t — ik(t — 8t)ét. (C.4)
If B(r) # o, according to Eq. (C.2) the force and hence the momentum change k depends
on the velocity #. As i(t 4 8t) is not known yet, one cannot determine k(¢ + &t) in Eq. (C.4)
directly. Instead, a predictor—corrector method is used, in which Eq. (C.4) is replaced by
ko(t+0t) =k(t) + %k(t)c?t — ik(t — 0t)dt and (Cs)
K, (t+8t) =k(t) + ik(t +0t)8t + %f((t)(?t — ék(t — 8t)8t (C.6)
and Eq. (C.6) is iterated until the correction k,,;(t + &t) — k,, (¢ + dt) falls below a prede-
termined threshold.
If B(r) = (o0,0,B,) independent of r and dV(r)/dz = o, corresponding to a later-

ally modulated two-dimensional electron gas (2DEG) in a perpendicular magnetic field,

Egs. (C.1) and (C.2) can be written in terms of x, y, k,, and k, as

. 1 aE(kx) ky) . 1 aE(kx, k),)
X—ET, y—ET, (C7)
hkx:eM_e)}sz and hky:eM+eXBz. (C.8)
ox a)/

A square lattice of antidots with period a can be represented by a phenomenological po-

tential of the form [4]

2a
Vix,y) =V [cos (E) cos (ﬂ)] with o €Z™, (C.9)
a a

where V; < o and « is a parameter controlling the steepness. A weak potential modulation
corresponds to —eV,, << Ep, where Ep is the Fermi energy, while —eV, > Ep implies the local

depletion of the carrier sheet. If —eV, >> Ey, the intersection contours —eV (x, y) = Eg
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are approximately circular and one can identify the diameter of the antidots as d ~ a[

X/Ex[(—eVy) /7).

It is convenient to express Egs. (C.7), (C.8) and (C.9) using dimensionless variables. The

B [—

lattice constant gives the natural scale for the position, leading to £ = x/a and j = y/a,
while the energy scale is set by Eg so that one can define U = —eV /Eg. With these definitions
Eq. (C.9) simplifies to

U(x,y) = Uo[cos (7x) cos (71)7)]2“, (C.0)
where Uy = —eV,/Eg ~ [cos(nd/2a)]2*. The energy dispersion should be scaled accord-
ingly as E & E /Eg, while the momentum coordinates will be k, £k, ko and l~<y © ky/ko.
If kg = \/W, where m_ is the cyclotron effective mass at Eg, and one further defines
f = t/t, and B = B,/B, with t, = \/m and By = 2v/2m_ Eg/ea, Egs. (C.7) and (C.8)
become

ax aE(i(x,];Zy) d)~/ . aE(I}mi{y)

—_— = = 5 - C.ll
i ok i~ ok, (1
dk,  0U(x,5) dj. dk, 0U(%7) dx

L Y5 7 “p C.
di ox  Cdi and oy di (Ca2)

For nearly free electrons, E(k,, k,) = h*(k; + k3) /2m*, so that m. = m* and a well-defined
Fermi wave number ky and Fermi velocity vg exist. The above definitions then imply ko = kg
and ty = 2a/vg, while By = 2m*vg/ea is the field for which the cyclotron radius R, =
m*ve/eB, equals a/2.

For electron holes, Egs. (C.11) and (C.12) need to be modified as described above, so that

one now has

dx  0E(k.k dy  0E(ky k
~:—7(~ y), —{/:—7(~ y), (C13)
dt ok, dt ok,
dk,  0U(x,7) dj- dk, 9U(%,j) dx.
- =B, d == —2—B: C.
di ox i e oy Cdi (C14)
If the hole band Ej, (k) is given by Eq. (5.8), the reduced energy E(k,, k, ) becomes
B(kuky) = =5 — 2 | 4)(R2 + R2) -\ B(k2 + R2)” + ok c
( x> )’)_E_F_zﬁe | |( xt y)_ ( xt y) + xMy o ( -15)
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where—as before—I take the anisotropy parameters to be A = —14-3, B = —10:4, and C =
13-5 [5]. With this dispersion relation, one finds m. ~ 0-185m, independent of energy. The
scale B, then identifies the magnetic field for which the unperturbed cyclotron orbit has the

same area as a circle of radius a/2.
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