
C Numerical Calculation of Carrier Trajectories

Mutationem motus proportionalem esse vi
motrici impressae, et �eri secundum lineam
rectam qua vis illa imprimitur.

(Sir Isaac Newton, Pricipia Mathematica)

Electron trajectories in an arbitrary electrostatic potential V�r� can be simulated by numer-
ically integrating the semiclassical equations of motion [1]

ṙ � 1

ħ
©k E�k� and (C.1)

ħk̇ � �e�E�r�� ṙ� B�r��, (C.2)

where r and k denote position and crystal momentum, E�k� is the energy dispersion, q the
charge, E�r� � �©rV�r� the electric �eld, and B�r� the magnetic �eld. ¿e equations of

motion for electron holes with energy Eh�k� are obtained by replacing E�k� by �Eh�k� in
Eq. (C.1) and �e by e in Eq. (C.2) [2].
Integrating the equations of motion of one or more particles is an ubiquitous problem,

and a number of general algorithms have been developed for this purpose, particularly in

the context of molecular dynamics simulations. For the present work I have chosen an ap-

proach based on Beeman’s algorithm [3], which gives both position and momentum up to

third order in the time step and provides for improved energy conservation compared to the
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unmodi�ed Verlet algorithm. In this scheme, the position and momentum at the next time

step are

r�t � δt� � r�t�� ṙ�t�δt � 2

3
r̈δt � 1

6
r̈�t � δt�δt and (C.3)

k�t � δt� � k�t�� 5

12
k̇�t � δt�δt � 3

2
k̇�t�δt � 1

12
k̇�t � δt�δt. (C.4)

If B�r� x 0, according to Eq. (C.2) the force and hence the momentum change k̇ depends

on the velocity ṙ. As ṙ�t� δt� is not known yet, one cannot determine k̇�t� δt� in Eq. (C.4)
directly. Instead, a predictor–corrector method is used, in which Eq. (C.4) is replaced by

k�t � δt� � k�t�� 3

2
k̇�t�δt � 1

2
k̇�t � δt�δt and (C.5)

kn��t � δt� � k�t�� 1

3
k̇�t � δt�δt � 5

6
k̇�t�δt � 1

6
k̇�t � δt�δt (C.6)

and Eq. (C.6) is iterated until the correction kn��t � δt�� kn�t � δt� falls below a prede-

termined threshold.

If B�r� � �0, 0, Bz� independent of r and ∂V�r�~ ∂z � 0, corresponding to a later-

ally modulated two-dimensional electron gas (2deg) in a perpendicular magnetic �eld,

Eqs. (C.1) and (C.2) can be written in terms of x, y, kx , and ky as

ẋ � 1

ħ

∂E�kx , ky�
∂kx

, ẏ � 1

ħ

∂E�kx , ky�
∂ky

, (C.7)

ħk̇x � e
∂V�x , y�

∂x
� e ẏBz , and ħk̇y � e

∂V�x , y�
∂y

� eẋBz. (C.8)

A square lattice of antidots with period a can be represented by a phenomenological po-

tential of the form [4]

V�x , y� � V �cos�πx
a
� cos�πy

a
��α with α > Z

�, (C.9)

where V � 0 and α is a parameter controlling the steepness. A weak potential modulation

corresponds to�eV P EF, where EF is the Fermi energy, while�eV A EF implies the local

depletion of the carrier sheet. If �eV Q EF, the intersection contours �eV�x , y� � EF
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are approximately circular and one can identify the diameter of the antidots as d � a� 

�

α
»
EF~��eV��π�.
It is convenient to express Eqs. (C.7), (C.8) and (C.9) using dimensionless variables. ¿e

lattice constant gives the natural scale for the position, leading to x̃
def� x~a and ỹ

def� y~a,
while the energy scale is set by EF so that one can de�ne Ũ

def� �eV~EF. With these de�nitions

Eq. (C.9) simpli�es to

Ũ�x , y� � Ũ�cos �πx̃� cos �πỹ��α , (C.10)

where Ũ � �eV~EF � �cos�πd~2a���α . ¿e energy dispersion should be scaled accord-

ingly as Ẽ
def� E~EF, while the momentum coordinates will be k̃x

def� kx~k and k̃y
def� ky~k.

If k �»
2mcEF~ħ, where mc is the cyclotron e�ective mass at EF, and one further de�nes

t̃ � t~t and B̃ � Bz~B with t �»
2mca~EF and B � 2

º
2mcEF~ea, Eqs. (C.7) and (C.8)

become

dx̃

d t̃
� ∂Ẽ�k̃x , k̃y�

∂k̃x
,

d ỹ

d t̃
� ∂Ẽ�k̃x , k̃y�

∂k̃y
, (C.11)

dk̃x
dt̃

� �∂Ũ�x̃ , ỹ�
∂x̃

� 2
d ỹ

d t̃
B̃, and

dk̃y

dt̃
� �∂Ũ�x̃ , ỹ�

∂ỹ
� 2

dx̃

d t̃
B̃. (C.12)

For nearly free electrons, E�kx , ky� � ħ�kx � ky�~2m�, so thatmc � m� and a well-de�ned
Fermi wave number kF and Fermi velocity vF exist. ¿e above de�nitions then imply k � kF

and t � 2a~vF, while B � 2m�vF~ea is the �eld for which the cyclotron radius Rc �
m�vF~eBz equals a~2.
For electron holes, Eqs. (C.11) and (C.12) need to be modi�ed as described above, so that

one now has

dx̃

d t̃
� �∂Ẽ�k̃x , k̃y�

∂k̃x
,

d ỹ

d t̃
� �∂Ẽ�k̃x , k̃y�

∂k̃y
, (C.13)

dk̃x
dt̃

� �∂Ũ�x̃ , ỹ�
∂x̃

� 2
d ỹ

d t̃
B̃, and

dk̃y

dt̃
� �∂Ũ�x̃ , ỹ�

∂ỹ
� 2

dx̃

d t̃
B̃� (C.14)

If the hole band Eh�k� is given by Eq. (5.8), the reduced energy Ẽ�k̃x , k̃y� becomes
Ẽ�k̃x , k̃y� � Eg

EF

� 2
mc

me

�SAS�k̃x � k̃y��½
B�k̃x � k̃y� � Ckxk


y	 , (C.15)
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where—as before—I take the anisotropy parameters to be A � �14�3, B � �10�4, and C �
13�5 [5]. With this dispersion relation, one �nds mc � 0�185me independent of energy. ¿e

scale B then identi�es the magnetic �eld for which the unperturbed cyclotron orbit has the

same area as a circle of radius a~2.
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