
1 Introduction

¿ey wanted facts. Facts! ¿ey demanded
facts from him, as if facts could explain
anything.

(Joseph Conrad, Lord Jim)

1.1 Motivation

T
he effect of arti�cial periodic potential modulations on quasi-two-dimensional car-

rier systems has raised considerable interest since the realization of this idea in phys-

ical devices has been demonstrated by Weiss et al. in 1989 [1]. ¿e modulations introduce

an additional length scale, the modulation period a, into the system, which is already char-

acterized by several intrinsic dimensions. In the simple case of a nearly free electron gas

with e�ective mass m� and areal density ne, these are the Fermi wave length λF � 2π~kF,
where kF � º

2πne is the wave number at the Fermi energy EF, on the one hand and the

mean free path ℓf � vFτ, where τ is the relaxation time and vF � »
2EF~m� � ħkF~m� the

Fermi velocity, on the other hand. In a magnetic �eld Bz perpendicular to the plane of the

electron sheet, the magnetic length ℓm�Bz� � »
ħ~eBz and the cyclotron radius Rc�Bz� �

ℓmkF � vFm�~eBz also become important. Similar considerations apply to more realistic

models.

In high-mobility quasi-two-dimensional electron gases (2degs) that appear in real semi-

conductor structures, the Fermi wave length is typically measured in tens of nanometres,

In general, several distinguishable scattering mechanisms can be relevant.
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while the mean free path at liquid helium temperatures can be several microns long. ¿e

diameter of the cyclotron orbits of electrons moving at the Fermi velocity lies in this range

for moderate magnetic �elds of several tenths of a Tesla to several Teslas, which are readily

accessible to experiments. ¿emagnetic length ℓm becomes comparable to a at even smaller

�elds.

Although the lower end of the scale still poses a signi�cant technological challenge, the

creation of superlattices with lattice constants of this size has now become feasible, opening

up the possibility of studying physical phenomena that result from the commensurability of

ℓm and Rc with the arti�cially imposed period a. In contrast, while every metallic solid has

a periodic potential set up by the atomic nuclei, commensurability e�ects are not observable

since the small inter-atomic distances of a few Ångström and large electron densities mean

that a magnetic �eld of tens of thousands of Teslas would be required to achieve a ℓm or Rc

comparable to the lattice spacing [2].

¿e original motivation for the interest in such systems centred on the commensurability

of a and the magnetic length ℓm and was sparked by Hofstadter’s 1976 paper [2]. He

pointed out that contemporary theoretical work on the problem implied that the energy

spectrum of the electron gas forms a fractal structure, which will be revisited in the next

section. Since observation depends on resolving the internal structure of Landau levels, and

hence on small thermal and impurity broadening as well as on a strongmagnetic �eld, which

implies small a, experimental traces of this intriguing spectrum have been hard to come by

and signi�cant progress has only recently been made [3].

A er its discovery byWeiss et al. [1, 4], the alteration of the transport properties caused

by the commensurability of the lattice period and the cyclotron radius has instead been at

the centre of attention. Although a quantum mechanical treatment is required to fully ex-

plain the observed behaviour, the e�ect is classical in its origin and results from the distor-

tion of ballistic electron trajectories by the superlattice potential. Depending on the relation

between a and Rc (and hence Bz), electronic conductivity is enhanced or suppressed; for

su�ciently strong modulations—or antidots—a large proportion of the electron orbits be-
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comes chaotic. ¿ese phenomena have mostly been investigated in 2degs formed in GaAs–

AlxGa�xAs heterostructures and are now quite well understood, although theoretical ap-

proaches to strongly modulated systems have largely been limited to numerical simulations.

Chaotic electron dynamics in periodic superlattices are still a focus of current research, com-

prising topics such as directional transport in arrays with broken symmetry connected to an

external energy source [5–7].

In InAs–GaSb double heterostructures (dhets), a 2deg forms in the InAs layer as a result

of charge transfer. Our research group in Oxford has developedmetal-organic vapour phase

epitaxy (movpe) techniques to grow such devices with consistently high concentrations of

mobile holes approaching that of the electrons [8, 9]. ¿e motivation behind the research

leading to the present thesis has been to study the expression of the semiclassical commen-

surability phenomena in a more complex system consisting of quasi-two-dimensional gases

of both electrons and electron holes. ¿e opportunity to test the generality of previous ob-

servations by looking at a di�erent material system and the absence of a depletion layer at

the free surface of InAs—which opens up the possibility of smaller e�ective antidot diamet-

ers [10]—have been additional considerations.

1.2 Hofstadter’s Butterfly

In the presence of a periodic potentialV�r� � V�r�R�, whereR is a lattice vector, the wave

function φ�r� of an electron in a magnetic �eld B obeys the time-independent Schrödinger

equation

Ĥφ�r� � �p̂� eA�r��
2m

φ�r��V�r�φ�r� � Eφ�r�, (1.1)

where p̂ � �iħ©r is the momentum operator and A�r� the magnetic vector potential with
B � ©r�A. ForA�r� � 0, the eigenstates of Ĥ are of the Bloch form φnk�r� � unk�r� exp�ik�
r�, where k is the crystalmomentumandunk�r� � unk�r�R�; their eigenvalues are the Bloch
bands En�k� with band index n.
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¿eenergy spectrumof Eq. (1.1)may be obtained by solving the Schrödinger-like equation

ˆ̄Hφ̄�r� � Eφ̄�r�, (1.2)

where the e�ective Hamiltonian ˆ̄H to �rst order in the magnetic �eld is En�κ̂� with ħκ̂ �
p̂ � eA�r� [11]. For a two-dimensional potential with R � a�nx , ny�, where nx , ny > Z�,
the Bloch bands can be approximated by En�kx , ky� � E

��
n �E

��
n �cos kxa�cos kya�, where

E
��
n and E

��
n are empirical parameters. Eq. (1.2) then becomes

E
��
n φ̄�x , y�� E

��
n

2
�φ̄�x � a, y�� φ̄�x � a, y�� e�ieBzx~ħφ̄�x , y � a�� e ieBzx~ħφ̄�x , y � a�� � Eφ̄�x , y� (1.3)

for a single band n, where the Landau gauge ©r � A�r� � 0 with A�r� � �0, Bzx , 0� has
been used. By de�ning n

def� x~a, ν def� kya, and ε
def� 2�E � E

��
n �~E��

n , making the Ansatz

φ̄�x , y� � exp�iνy~a�n, and introducing the dimensionless parameter α def� eBza~�2πħ�,
one can simplify Eq. (1.3) to Harper’s equation [2, 13]:

n� � n� � 2 cos�2πnα � ν�n � εn . (1.4)

¿e reduced magnetic �eld α � �Bza���h~e� � Φ~Φ�D�


is the ratio of the magnetic �ux

per unit cell Φ � Bza to the Dirac �ux quantum Φ
�D�


� h~e; it can also be expressed in
terms of the magnetic length ℓm as α � �a~ℓm��2π.
¿e eigenvalue spectrum εα of the di�erence equation (1.4) is the set of all ε for a given α

such that for some value of ν there is a n (and hence φ̄�x� and φ�x�) that is bounded for all
n. It has the peculiar property that it depends on the rationality of α, i.e., whether α � p~q
for some prime numbers p and q. In this case, there are q distinct energy bands, whereas

for irrational α the spectrum consists of in�nitely many isolated values. In his famous 1976

paper [2], Hofstadter points out that the union of all εα (see Fig. 1.1) forms a self-similar

fractal set [14], which has since become known as Hofstadter’s butter�y. Its graph is periodic

See, e.g., Kittel’s book [12] for a derivation of En�k� in the Kronig-Penney framework, from which this
semiempirical ‘Harper model’ may be justi�ed.

Not to be confused with the superconducting �ux quantum Φ
�s�

� h~2e.
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Figure 1.1: Hofstadter’s butter�y

in α with period 1—so that the pattern repeats for each additional �ux quantum per unit

cell—and the unit interval �0, 1� exhibits re�ection symmetry in the lines εα � 0 and α � 


.

At low α, the bands group into clusters which can be identi�ed with the familiar Landau fan

that is predicted in the absence of a periodic potential. As is characteristic of fractals arising

from mathematical descriptions of physical systems, the unphysical property of being dis-

continuous everywhere is a formal consequence of the idealized theoretical representation.

If a �nite uncertainty in Bz is introduced [2], or if a �nite size system is considered [15], con-

tinuity is recovered, and the scale at which the fractal is resolved depends on the particular

model.

Interestingly, Harper’s equation (1.4) also emerges from �rst-order perturbation theory in

the complementary limit of a weak potential modulation of the formV�x , y� � V�cosKx�
cosKy�, with K

def� 2π~a, perturbing a Landau quantized system [16, 17]. In this case, the

parameters α def� Φ
�D�


~Φ and ν def� �kyℓm~�2πa�have a di�erentmeaning—so that the energy

spectrum is periodic in 1~Bz—and Hofstadter’s butter�y describes the internal structure of

a single Landau level. Hofstadter [2] points out that such a mapping is consistent with

Landau quantization is discussed in Sec. 5.6.2
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the scaling properties of the complete pattern. However, the range of validity is di�erent

for both approaches and the exact reappearance of the same equation is an artefact of the

peculiar choices for E�kx , ky� and V�x , y�.
1.3 Development

¿e initial work on the InAs–GaSb dhets was done using the electron beam lithography

(ebl) facilities available to our group in Oxford. ¿ese consisted of a converted scanning

electron microscope (sem) with a resolution not much better than 0�5 µm, and it became
quickly clear that the lithographical performance of this setup was severely limiting the ex-

periments that could be accomplished. ¿is was especially true as the high density of the

required antidot patterns implied a signi�cant contrast reduction due to exposure from sec-

ondary electrons. Additionally, the poor selectivity of the applicable etch chemistries for

the semiconductor materials over ebl resists meant that the success rate at the intended etch

depths was low and could only be improved by switching to a substantiallymore complicated

technique using an intermediate mask.

As the upgrade of the ebl equipment accessible to me in Oxford or through our collab-

orators was delayed, and a new atomic force microscope (afm) had become available to our

group that could be modi�ed for such work, I began to investigate the option of patterning

the dhets by local anodic oxidation (lao) using this instrument. While only shallow sur-

face modi�cations were possible with this approach, preliminary experiments had shown

that removal of only a part of the thin GaSb layer forming the uppermost part of the dhets

was enough to impose a signi�cant potential on the carrier gases. Moreover, the technique

promised a much improved resolution and greater �exibility in device fabrication.

A er lao performance, which is mostly limited by poor reproducibility, had been optim-

ized to the point where patterned dhets as originally envisaged could be created, it became

apparent that the initial results had been misleading. Under a wide range of conditions, the

modulation potential set up by the surface corrugation was insu�cient to prompt a meas-
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urable e�ect. In response to this, I modi�ed the technique to allow for deeper modi�c-

ations by patterning an intermediate etch mask instead of the semiconductor surface. In

the meantime, improved ebl facilities had become available in the Cavendish Laboratory in

Cambridge and thanks to the help of Geb Jones these could be used to create very similar

samples, which formed the basis of much of the work reported in Chapter 7.

¿roughout the evolution of this research I worked closely withNigelMason and Philip

Shields on the growth of InAs–GaSb dhets by movpe in the now-defunct atmospheric

pressure reactor in the Clarendon Laboratory. In the context of this work, I undertook

measurements on a large number of dhets both for growth assessment and to improve our

understanding of the fundamental properties of these systems, including for the �rst time

a systematic investigation of the magnetotransport properties of structures containing two

InAs wells.

1.4 Thesis Structure

¿e remainder of this thesis can roughly be divided in two parts: Chapters 2, 3, and 4 focus

on the engineering aspects, especially the work on lithographical techniques using a scan-

ning probe microscope, while Chapters 5, 6, and 7 are concerned with the physics of InAs–

GaSb double heterostructures, paying special attention to lateral potential modulations in

the presence of a perpendicular magnetic �eld. Each part starts with a chapter that sets the

scene by providing the essential background information.

In the case of the �rst part, this is Chapter 2, which describes the operation and the limita-

tions of the atomic force microscope and outlines how the special capabilities of this instru-

ment can be applied to surface manipulation. As the issues are quite general, and to allow

for the straightforward comparison with similar lithographic approaches, I shall approach

the topic from the point of view of generic scanning probe microscopes and introduce the

afm as an important application of these ideas. Chapter 3 builds on this basis in discussing

my work on the modi�cation of GaSb, InAs, and Al surfaces by local anodization with an
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afm. How this technique may be integrated in a fabrication scheme for antidot samples or

similar devices is explained in Chapter 4, which also covers the details of the experimental

procedures used in the present work.

¿e second part starts with a an overview of the basic physics of InAs–GaSb dhets in

Chapter 5. In the same chapter, the growth of these structures in our research group in

Oxford is surveyed, and the individual dhets studied in the remainder of the thesis are

introduced. Chapter 6 reports studies of a series of substrates containing double InAs wells,

relating them to previous work on superlattices. Lateral antidot lattices modulating InAs–

GaSb dhets are �nally investigated in Chapter 7, exploring the possibility of a contribution

to the observed commensurability e�ects from the presence of a mobile hole layer.

Chapter 8 concludes the thesis with a summary of themost important results and attempts

to assess the lessons learnt in the conduct of this research. What follows is a series of appen-

dices containing material that was excluded from the above chapters so as not to distract

from the main exposition, but which I consider none the less important for substantiating

some of the claims made in the main text.
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