
B Calculating Conductivity

¿emathematics is not there till we put it
there.

(Sir Arthur Stanley Eddington, ¿e Philosophy
of Physical Science)

B.1 The Boltzmann Equation

¿e Boltzmann Equation describes, in the presence of scattering, the evolution of the distri-

bution function f �r, k, t� of an ensemble of particles obeying the semiclassical equations of
motion

ṙ � v�k� and (B.1)

ħk̇ � F�r, k�, (B.2)

where r�t� and k�t� denote position and crystal momentum, and v and F have their usual

meanings of velocity and force, respectively. It can then be shown that [1]

d f �r, k, t�
dt

� � ∂

∂t
� v � ©r�F � 1

ħ
©k� f �r, k, t� � �∂ f �r, k, t�

∂t
	
coll

, (B.3)

where the right hand side describes the change in f �r, k, t� due to collisions.
Once f �r, k, t� is known, the carrier and current densities can be calculated by integrating

over momentum space, yielding

n�r, t� � �2π��d ∫ �k� f �r, k, t� dk and (B.4)

j�r, t� � �2π��d ∫ �k� f �r, k, t�qv�k� dk, (B.5)

where d is the number of dimensions and �k� is the density of states.
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B Calculating Conductivity

To make the Boltzmann equation (B.3) tractable, the relaxation time approximation is

o en used. It amounts to the assumption that the scattering probability for a carrier with

momentum k at position r is of the form dt~τ�r, k�, and that the distribution of carriers
emerging from collisions is the local equilibriumdistribution f�r, k, t�, i.e., the Fermi-Dirac
distribution fFD�E� def� �exp ��E � µ�~kBT�� 1�� evaluated at E � E�k�t�� and allowing
for a local temperature T � T�r�t�� and chemical potential µ � µ�r�t��. ¿e collision term

then has the simple form�∂ f �r, k, t�
∂t

	
coll

� � f �r, k, t�� f�r, k, t�
τ�r, k� , (B.6)

and the Boltzmann equation (B.3) becomes

d f �r, k, t�
dt

� � f �r, k, t�� f�r, k, t�
τ�r, k� . (B.7)

Eq. (B.7) can be now be solved using standard techniques, leading to

f �r, k, t� � e� ∫ τ�r,k�� dt � ∫ t�ª f�r, k, t�e ∫ τ�r,k�� dt

τ�r, k� dt � const.� . (B.8)

¿e constant (with respect to t) depends on the initial conditions and the corresponding

term decays exponentially for physical τ�r, k�. ¿e �rst term, which describes the intrinsic

behaviour of the system, may also be written as [1]

f �r, k, t� � f�r, k, t�� ∫ t�ª P�t, t�� d

dt� f�r, k, t� dt� , (B.9)

where P�t, t�� def� exp�� ∫
t

t� 1~τ�r�t���, k�t���� dt��� is the probability for a particle with mo-
mentum k�t� at position r�t� not to have undergone collision in the time interval �t�, t�.
If v�k� � �1~ħ�©k E�k�, the force isF�r, k� � q�E�r, t��v�k��B�r, t��, and the chemical

potential µ as well as the temperature T are independent of position, then

d f�r, k, t�
dt

� ∂ f�r, k, t�
∂E

ħv�k� � qE�r, t�
ħ

� q
∂ fFD�E�

∂E
v�k� � E�r, t�; (B.10)

if one also makes the simplifying assumption of a constant relaxation time τ, P�t, t�� �
exp���t � t��~τ�. Under these conditions, Eq. (B.9) becomes

f �r, k, t� � f�r, k, t�� q ∫
t�ª e��t�t��~τ ∂ fFD�E�

∂E
v�k� � E�r, t� dt�, (B.11)

If τ only depends on energy, ∂τ~ ∂t is still approximately zero in metals and the same arguments can be
used [1].
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which further simpli�es to

f �k� � f�k��R � q

τ� � iω

∂ fFD�E�
∂E

v�k� � E�ω�	 (B.12)

if B�r, t� � 0 and E�r, t� � R�E�ω� exp��iωt��. Using Eq. (B.12) in Eq. (B.5), the current
density j�ω� is calculated as

j�ω� � q�2π�d ∫ �E�
τ� � iω

∂ fFD�E�
∂E

v�k� � E�ω� v�k� dk. (B.13)

Since j�ω� � σ�ω�E�ω�, the conductivity tensor is accordingly
σµν�ω� � q�2π�d ∫ �E�

τ� � iω
��∂ fFD�E�

∂E
	vµ�k�vν�k� dk. (B.14)

¿e derivation is independently valid for every energy band in which ∂ fFD�E�~ ∂E is non-

zero (i.e., which intersects the Fermi level), and the total conductivity is obtained by sum-

ming the contributions of all such bands multiplied by their individual degeneracies.

B.2 Kubo’s Linear Response Theory

B.2.1 Fundamentals

In his 1957 paper [2], Ryogo Kubo discusses how the linear response to a small perturba-

tion of a system in equilibrium can be expressed in terms of the �uctuations of dynamical

variables of the unperturbed system. His linear response theory, which extended and uni-

�ed prior work on the statistical description of transport properties, has since become an

important tool in �elds such as condensed matter physics and �uid dynamics.

If B�t� is a physical quantity corresponding to the expectation value of an observable B̂ at
time t, the linear change ∆B�t� in B�t� due to a spatially homogeneous �eld ξA�t� can be
written as

∆B�t� � ∫ ª�ª αBA�t � t��ξ�t�� dt�, (B.15)

¿e generalization to inhomogeneous �elds is complicated, but conceptually straightforward.
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where αBA�t� is the response at time t caused by a unit impulse at t � 0, and causality

implies αBA�t� � 0 for t � 0. For a periodic �eld ξA�t� � R�ξ��A exp�iωt��, the response is
expressed as

∆Bω�t� � R �χBA�ω�ξ��A e iωt� , (B.16)

where the complex susceptibility χBA�ω� is the Fourier transform of αBA�t�.
To calculate αBA�t�, Kubo assumes that the system is described by the Hamiltonian

Ĥ�t� � Ĥ � ξA�t�Â, where Ĥ governs the natural motion of the unperturbed system

and Â is the generalized force conjugate to ξA�t�. ¿e density matrix ρ�t� then obeys the
equation

∂ρ�t�
∂t

� 1

iħ
�Ĥ�t�, ρ�t�� � 1

iħ
��Ĥ, ρ�t��� ξA�t��Â, ρ�t��� . (B.17)

With the Ansatz ρ�t� � ρ�∆ρ�t�, where ∆ρ�t�� 0 as t � �ª and ρ is taken to be the

equilibrium distribution, i.e., �ρ, Ĥ� � 0, he simpli�es Eq. (B.17) to

∂∆ρ�t�
∂t

� 1

iħ
��Ĥ, ∆ρ�t��� ξA�t��Â, ρ�� , (B.18)

which can be solved for ∆ρ�t� [2, 3], giving
∆ρ�t� � � 1

iħ ∫
t�ª�Â�t� � t�, ρ�ξA�t�� dt�, (B.19)

where Â�t� def� Û†
�t�ÂÛ�t� is a Heisenberg operator constructed using the time evolution

operator Û�t� def� exp��iĤt~ħ�. From Eq. (B.19) ∆B�t� follows as
∆B�t� � Tr∆ρ�t�B̂ � � 1

iħ ∫
t�ªTr�Â�t� � t�, ρ�B̂ξA�t�� dt�. (B.20)

Comparing Eqs. (B.15) and (B.20), one �nds

αBA�t� � θ�t�φBA�t�, (B.21)

where θ�t� is the Heaviside function and
φBA�t� � � 1

iħ
Tr�Â��t�, ρ�B̂. (B.22)

In the following I shall de�ne the Fourier transform of F�t� as F̃�ω� def� ∫
ª�ª F�t� exp��iωt� dt so that

F�t� � �1~2π� ∫ª�ª F̃�ω� exp�iωt� dω.
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Because of the cyclic property of the trace and the de�nition of the Heisenberg operators,

Eq. (B.22) can be rewritten as

φBA�t� � 1

iħ
Tr�ρ, Â��t��B̂� 1

iħ
Tr ρ�Â��t�, B̂�� 1

iħ
Tr ρ�Â�0�, B̂�t�� (B.23)� 1

iħ
a�Â�0�, B̂�t��f


. (B.24)

An analogous expression is found in the classical case; the derivation proceeds along exactly

the same lines if ρ is taken as the classical phase space distribution function, the commutator�1~iħ��Â, B̂� is replaced by the classical Poisson bracket �A, B� def� Pi��∂A~ ∂qi��∂B~ ∂pi���∂A~ ∂pi��∂B~ ∂qi�� and the trace by integration over the full set �pi , qi� of phase space
coordinates.

In terms of matrix elements Amn
def� amTÂTnf in the basis of the eigenstates Sne of Ĥ, the

response function Eq. (B.24) is given explicitly as

φBA�t� � 1

iħ
Q
n,m

pn �AnmBmne
�iωnm t � BnmAmne

iωnm t� , (B.25)

where pn are the weights of the density matrix ρ � Pn Sne pn `mS, I de�ne ωnm
def� �En �

Em�~ħ, and En are the eigenvalues of Ĥ. In the same basis, the Fourier transform of φAB�t�
is written as

φ̃BA�ω� � 2π

iħ
Q
n,m

pn�AnmBmnδ�ω� ωnm�� BnmAmnδ�ω� ωnm�� (B.26)

� 2π

iħ
Q
n,m

�pn � pm�AnmBmnδ�ω� ωnm�. (B.27)

B.2.2 Correlation Functions

To relate them to physically meaningful quantities, it is convenient to express φ̃BA�ω�—and

hence φBA�t�, αBA�t�, and χBA�ω�—in terms of the symmetrized correlation function

ΨBA�t� def� a�Â�0�, B̂�t��f


def� 1

2
aÂ�0�B̂�t�� B̂�t�Â�0�f


, (B.28)
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which is one of the possible quantum mechanical equivalents of the classical correlation

function `A�0�B�t�e. In the basis of the energy eigenstates, the symmetrized correlation
function becomes

ΨBA�t� � 1

2
Q
n,m

pn �AnmBmne
�iωnm t � BnmAmne

iωnm t� and (B.29)

Ψ̃BA�ω� � πQ
n,m

pn�AnmBmnδ�ω� ωnm�� BnmAmnδ�ω� ωnm�� (B.30)

� πQ
n,m

�pn � pm�AnmBmnδ�ω� ωnm�. (B.31)

If ρ � ρ�β� is a canonical distribution at the temperature T � 1~kBβ [2, 4], the weights
are pn � exp��βEn�~Pm exp��βEm� and �pn � pm�~�pn � pm� � tanh�� 


β�En � Em��.

Eq. (B.27) then becomes

φ̃�β�
BA �ω� � 2π

iħ
Q
n,m

tanh� 1
2
βħωnm� �pn � pm�AnmBmnδ�ω� ωnm�

� 2

iħ
tanh� 1

2
βħω� Ψ̃�β�

BA �ω� � ω

iEβ�ω� Ψ̃�β�
BA �ω�, (B.32)

where Eβ�ω� � ħω~2� ħω~�exp�βħω�� 1� is the average energy of an harmonic oscillator
with frequency ω at T � 1~kBβ. On the other hand, if ρ � ρ�mp�

 describes a system of many

non-interacting particles [4], we can write the φ̃�mp�
BA �ω� and Ψ̃�mp�

BA �ω� in terms of the single
particle microcanonical spectra φ̃�E�

BA �ω� and Ψ̃�E�
BA �ω� as

φ̃�mp�
BA �ω� �Q

n

pnφ̃
�En�
BA �ω� and Ψ̃

�mp�
BA �ω� �Q

n

pnΨ̃
�En�
BA �ω�, (B.33)

where φ̃�En�
BA �ω� and Ψ̃�En�

BA �ω� can be identi�ed by comparing Eq. (B.33) with Eqs. (B.26)
and (B.30). By exchanging summation indices in Eq. (B.26), adding the permutated version

to the original, and dividing by 2, we can write

φ̃�mp�
BA �ω� � π

iħ
Q
n,m

�pn � pm��AnmBmnδ�ω� ωnm�� BnmAmnδ�ω� ωnm��
� �ωπ

i
Q
n,m

pn � pm
En � Em

�AnmBmnδ�ω� ωnm�� BnmAmnδ�ω� ωnm��. (B.34)
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If f �En� def� pn and the level spacing ħωnm is small, so that � f �En�� f �Em�� � �En � Em� �
∂ fFD�En�~ ∂En independent of m, Eq. (B.34) becomes

φ̃�mp�
BA �ω� � �ω

i
Q
n

∂ fFD�En�
∂En

Ψ̃
�En�
BA �ω�. (B.35)

In the same limit of small ħωnm (and speci�cally if the density of states �E� is well de�ned)
the sum over n can be replaced by integration over energy, leading to

φ̃�mp�
BA �ω� � ∫ ª


Ld�E� f �E�φ̃�E�

BA �ω� dE � �ω

i ∫
ª


Ld�E�∂ fFD�E�

∂E
Ψ̃

�E�
BA �ω� dE,

(B.36)

where Ld is the d-dimensional real space volume per particle, so that Ld�E� is the energy
density of single-particle states.

B.2.3 Electrical Conduction

Kubo’s linear response theory is directly applicable to the problem of electrical conduction.

¿e complex conductivity tensor σµν�ω� relates the current density Jµ�t� in the µ-direction
to the electric �eld Eν�t� � R�E��

ν exp�iωt�� in the ν-direction and obeys the relation
Jµ�t� � R �σµν�ω�E��

ν e iωt� . (B.37)

If Ĥ � Ĥ �Pi qiPν Eν�t�r̂�i�ν is the Hamiltonian of a system consisting of many particles

with charges qi and position operators r̂�i�, while Â is the polarization Π̂ν
def� Pi qi r̂

�i�
ν ,

Eqs. (B.16), (B.21) and (B.24) imply

σµν�ω� � 1

iħ ∫
ª


a�Π̂ν�0�, Ĵµ�t��f e�iωt dt (B.38)� V

ħω ∫
ª


a�Ĵν�0�, Ĵµ�t��f e�iωt dt, (B.39)

where V is the total volume of the system. ¿e last step follows from Ĵ � ˙̂Π~V , where
˙̂Π

def� �1~iħ��Π̂�t�, Ĥ�, and the fact that φ̃AB�ω� � �i~ω�φ̃CB�ω� if Ĉ�t� � ˙̂A�t�. If the

system is in thermal equilibrium with a heat reservoir, by Eq. (B.32)

σµν�ω� � V

Eβ�ω� ∫ ª


a�Ĵν�0�, Ĵµ�t��f�β�
e�iωt dt, (B.40)

¿is can be veri�ed by expressing both sides in terms of matrix elements.
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which is one of the results commonly referred to as the ‘Kubo formula’ of conductivity. For

non-interacting electrons, Eq. (B.39) becomes

σµν�ω� � e

ħωLd ∫
ª


a�v̂ν�0�, v̂µ�t��f�F�

e�iωt dt (B.41)

� eħ

iLd
Q
n,m

fFD�En�� fFD�Em�
En � Em

`nSv̂νSme amTv̂µTnf
ħω� �En � Em�� i0� (B.42)

where fFD�E� is the Fermi-Dirac distribution. If the requirements for Eq. (B.36) are met, we
may further approximate Eq. (B.41) as

σµν�ω� � e ∫
ª


dE ∫

ª


dt �E� ��∂ fFD�E�
∂E

	 a�v̂ν�0�, v̂µ�t��f�E�
e�iωt. (B.43)

Starting from Eq. (B.43), one can calculate the semiclassical static conductivity σµν of a

two-dimensional electron gas at zero temperature as

σµν � m�e
πħ ∫

ª


avν�0�vµ�t�f�EF�
dt, (B.44)

where a�v̂ν�0�, v̂µ�t��f�EF�


has been replaced by the classical velocity autocorrelation func-

tion avν�0�vµ�t�f�EF� def� Cµν�t�, which can be obtained numerically from simulated traject-

ories. ¿e simplest way to take impurity scattering into account in such a calculation is to

assume statistically independent scattering events that completely destroy any velocity cor-

relation. If τ is the average time between two such scattering events, the probability that no

scattering occurs in the time interval �0, t� is P�t� � exp��t~τ�, and the velocity autocor-
relation function becomes Cµν�t� � P�t�C̆µν�t�, where C̆µν�t� is calculated in the absence
of impurity scattering [6].
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