
7 Antidot Samples

¿e world changed from having the
determinism of a clock to having the
contingency of a pinball machine.

(Heinz Rudolf Pagels, ¿e Cosmic Code)

7.1 Introduction

7.1.1 Overview

L
ateral potential modulations of quasi-two-dimensional carrier gases have been

a main focus of the research leading to this thesis. In the present chapter I shall �-

nally report magnetotransport measurements taken on InAs–GaSb double heterostructures

(dhets) that have been modi�ed by imposing a two-dimensional periodic superlattice po-

tential with a lattice period a. All samples investigated in this chapter fall in the range

λF � a � ℓf , with electron concentrations ne between 7�1 and 12�0� 10 cm�, correspond-
ing to a Fermi wave length λF of 30 to 22nm and an estimated mean free path ℓf between

1�5 and 2�7 µm at 4�2K. For this reason, the exposition of the experimental and theoretical
background in Sec. 7.2 concentrates on the features of essentially classical origin resulting

from the commensurability of the cyclotron radius Rc and the lattice period a, which are

expected in this regime. For the quoted electron concentrations and modulation periods

¿e electronmobility is di�cult tomeasure because of the e�ect of theminigap (see Sec. 5.5.3), and the given
values, which were obtained from the resistivity in a high magnetic �eld parallel to the plane of the sample,
should be regarded as lower limits.
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7 Antidot Samples

from 100 to 800nm, the commensurability condition 2Rc � a is ful�lled at perpendicular

magnetic �elds Bz between 0�4 and 1�4T. ¿is �eld range is accessible to experiments with

comparable ease and there is a temperature window in which potential commensurability

peaks will not be obscured by quantum oscillations.

I had originally hoped to employ the high resolution of the local anodic oxidation (lao)

technique to create potential modulations with small periods of only a few λF. However, it

became clear during the experiments on lao-modi�ed samples, which are summarized in

Sec. 7.4, that the shallow surfacemodi�cation that could be achievedwith thismethodwould

be insu�cient to generate a su�ciently strong modulation to investigate commensurability

e�ects in this regime. Instead of further pursuing this approach, I chose to revisit the creation

of antidot patterns by means of a multistep process involving deep anisotropic plasma etch-

ing, and Sec. 7.5 relates comprehensive magnetotransport measurements on electron-rich

dhets patterned by this method.

7.1.2 A Note on Background Subtraction

¿e dhets discussed in this thesis exhibit a strong positive magnetoresistance in a magnetic

�eld perpendicular to the plane of the carrier sheets. ¿is is typical for bipolar systems,

and may in general terms be understood with the help of the Drude model introduced in

Sec. 5.6.1. Consequently, modulations in themagnetoresistance due to the imposed potential

can become obscured. It is therefore sometimes desirable to subtract a smooth reference

curve for clarity.

While the background in the absence of a potential modulation can be determined by

measuring the magnetoresistance of a suitably chosen control sample, subtracting it is usu-

ally not helpful. Apart from any commensurability peaks that may appear, the imposed pat-

tern typically a�ects the shape of the magnetoresistance curve around zero �eld and may

See Secs. 4.2.6, 4.2.2, and 4.2.4.
¿is is di�erent from the situation in pure electron gases, in which the perpendicular �eldmagnetoresistance
in the absence of a potential modulation is weak and changes become immediately apparent.
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change the average electron–hole ratio. ¿e di�erence then still has a strong �eld depend-

ence that makes the commensurability features di�cult to assess.

Instead, we subtract a smooth curve that has been determined by a standard least-squares

�t of an appropriate �t function to the area of interest. Since there is no known analytical

model taking into account all contributions to the background, we employ a simple second-

order polynomial as the �t function. Such a parabola is the simplest �t function that yields a

satisfactory result for background subtraction and has the added advantage that it does not

have any in�ection points that may lead to spurious peaks in the di�erence. All magnetores-

istance traces in this chapter that have had a background subtracted have been prepared in

this way; only the positive �eld part is used for �tting, and even though the magnetoresist-

ance is symmetric, the �tted parabola is hence not necessarily centred around zero.

7.2 Background

7.2.1 Overview

Several approaches to the periodic structuring of two-dimensional carrier gases are pos-

sible, and most of them have been pursued to some extent. ¿e carriers can be subjected to

a modulated electric or magnetic �eld, and the modulation can be periodic in one or two

dimensions. ¿e electric potential can be varied directly, by modulating the charge density

at a nearby surface—e.g., by creating local variations of surface states or by using a patterned

gate electrode [1]—or indirectly, as a piezoelectric potential in a strainedmaterial [2]. In both

cases, the pattern has to be de�ned lithographically; in systems such as GaAs–AlxGa�xAs

heterostructures, in which carriers can be created by photoabsorption, a periodic modula-

tion of the carrier concentration can also be achieved by holographic means. ¿e magnetic

It is tempting to use a function of the form y�x� � a�1 � bx�~�1 � cx� derived from the simple model
of Eq. (5.25), as this gives a good apparent �t for most experimental curves. However, the Drude model
ignores electron–hole interaction and can in any case not account for the e�ect of a periodic modulation on
the low-�eld magnetoresistance—the good agreement is merely a result of the large number of parameters.
Subtracting such a background usually works fairly well, but may introduce additional arti�cial peaks.
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�eld can be modulated by bringing the carrier sheet close to superconducting or ferromag-

netic structures exhibiting the desired periodicity.

¿e theoretical treatment of the transport properties in the presence of such modulations

has been centred around two complementary approaches: perturbation theory, which is

valid for weak periodic componentsV�r�P EF~e, and numerical simulations of individual
carriers, which are also applicable to antidots and the intermediate range. ¿e pertinent fea-

tures of modulated quasi-two-dimensional electron gases (2degs) are now well understood

on the basis of such calculations. In the case of strong modulations the carrier dynamics

become fully chaotic.

7.2.2 Weak Modulations

Evidence

¿e e�ect of weak lateral modulations on the transport in a 2degwas �rst studied in 1989 by

Weiss et al. [3–5]. ¿ey used the persistent photoconductivity e�ect of GaAs–AlxGa�xAs

heterojunctions to realize, by means of holographic illumination, one-dimensional mod-

ulations of the electron density of a 2deg with a sub-micron period a. At liquid helium

temperatures, the magnetoresistance was measured with the current �owing either paral-

lel (ρxx) or perpendicular (ρyy) to the direction in which the potential varied. Low-�eld

oscillations appeared, which were periodic in 1~Bz; the position of the minima of ρxx�Bz�
could be described by the commensurability condition

2Rc�Bz� � �λ � φ�a; λ > Z
�, (7.1)

where Rc�Bz� is the cyclotron radius of the two-dimensional electrons at the Fermi level EF

and φ � 

is a phase shi . In ρyy, much weaker oscillations, which were shi ed by half a

period, could be observed, while no oscillations were detected in the Hall resistivities ρxy

and ρyx . ¿emagnetotransport features were later con�rmed in similar experiments [1] and

have since become known asWeiss oscillations.
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¿ese studies were soon extended to two-dimensional modulations, for which weaker

oscillations were seen in both ρxx�Bz� and ρyy�Bz�; their phase corresponded to that of the
ρyy�Bz� oscillations in the one-dimensional case [6]. Magnetoresistance oscillations in a

periodicmagnetic �eld were �rst reported by Ye et al. [2] in 1995; compared to experiments

imposing electric �eld modulations, the minima of the ρxx�Bz� oscillations were shi ed by
half a period, corresponding to φ � � 


in Eq. (7.1).

Quantum Model

Following the original approach by Gerhardts [5], the magnetoresistance features in the

presence of a one-dimensional modulation can be understood by assuming a harmonic

modulation of the electric potential V�x� � V cosKx, where K
def� 2π~a, and modifying

Eq. (5.28) accordingly. ¿e one-dimensional Hamiltonian of the modulated system then be-

comes

Ĥ � Ĥ �V�x� � � ħ

2m� ∂

∂x
� eB

z�x � x�
2m� � V�x�, (7.2)

where Ĥ is the Hamiltonian in the absence of a modulation and x � �ħky~eBz the orbit

centre coordinate.

Eq. (7.2) can be diagonalized numerically, orV�x�may be treated as a perturbation to Ĥ.

In this case, the �rst-order correction to the energy is

`ψN SV�x�SψNe � V cos�Kx�e�X~LN�X�, (7.3)

where ψN is the unperturbed wave function in Landau level N , X
def� Kħ~2eBz, and LN�X�

the N th Laguerre polynomial. For �xed X, LN�X� oscillates as a function of the index N ,
leading to a broadening of the individual Landau bands that oscillates with the Landau level

index; for LN�X� � 0, the energy correction vanishes and there is no broadening. As the

λth zero of LN�X� is approximately X�N�
λ
� ��π~2��λ� 


����N� 


�, the �at-band condition

In Sec. 5.6.2, ξ � x � x. ¿is substitution is no longer useful, as the eigenvalues are no longer independent
of the orbit position if a modulation is present.
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in terms of the cyclotron radius R�N�
c � �2~K��X�N�

λ
�N � 


��~ of the N th Landau Level

is 2R�N�
c � �λ� 


�a. If R�N�

c is identi�ed with the cyclotron radius at EF, Eq. (7.1) is recovered.

¿e eigenstates ψ�x�
N of Ĥ have a �nite group velocity and carry current in the y-direc-

tion [5]: aψ�x�
N Tv̂yTψ�x�

N f � � 1
ωc

∂EN�x�
∂x

, (7.4)

where EN�x� is the energy eigenvalue in theN th Landau level. UsingKubo’s linear response

theory [7] (see Appendix B) with the assumption of a constant relaxation time τ, the contri-

bution to the conductivity σyy due to such current carrying states can be estimated in terms

of the velocity matrix elements as [5]

∆σyy � �2e
2π

eBz

ħ ∫
a



dx
a
Q
N

τ f ��EN�x�� Uaψ�x�
N Tv̂yTψ�x�

N fU , (7.5)

where f ��E� is the derivative of the Fermi-Dirac distribution. As a consequence of Eqs. (7.5),
(7.4), and (7.3), σyy�Bz� exhibits oscillations with minima at magnetic �elds for which EF lies

in a �at Landau band. If σxy Q σxxσxy, which is realistic for the 2degs originally investigated,

ρxx � σyy~σxy, and the minima in ρxx�Bz� occur at the same positions, which are given by
Eq. (7.1) as explained above.

¿e remainder of the conductivity is due to scattering between Landau levels; in the un-

modulated system, this is the only contribution. ¿e oscillations in ρyy arise from this term

and can be explained by abandoning the assumption of a constant relaxation time [6, 8, 9].

¿e e�ect of the impurity potential can then be described with the help of Green’s func-

tions in the self-consistent Born approximation. ¿is results in a modulation of the peak

height of the density of states oscillations, and the height becomes maximal for those peaks

corresponding to �at Landau bands. ¿e components of the conductivity tensor, when cal-

culated using the Kubo formula, are essentially proportional to the square of the density of

states, leading to maxima at the �at band condition, Eq. (7.1). ¿e Landau band conductivity

discussed in the previous paragraph, which has minima at the same magnetic �eld values,

dominates σyy (and hence ρxx) while oscillations with maxima at these positions appear in

σxx (and ρyy)—in agreement with experiment.
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On extending the treatment to two-dimensional potentials [6, 8, 9], the bandwidth oscil-

lations for each direction are individually found to be the same as in the one-dimensional

case. However, as discussed in the description of the Hofstadter spectrum (see Sec. 1.2), each

Landau level is split into subbands; if the electron mobility is high enough that the splitting

between a given pair of subband groups is resolved, thematrix element between correspond-

ing states does not contribute to ∆σyy and the band conductivity is accordingly strongly sup-

pressed for high mobility samples. In this case, the observable oscillations are dominated by

the density of states and ρxx , like ρyy, has maxima at the �elds given by Eq. (7.1).

Vasilopoulos and Peeters [10, 11] as well as Xue et al. [12] have used the same Ansatz

for weak magnetic modulations B�m�
z �x� � B cosKx. ¿e magnetic vector potential in the

Landau gauge isA � �0, Bzx��B~K� sinKx , 0� and theHamiltonian becomes Ĥ � Ĥ�Ĥ,

where

Ĥ � ω

K
�p̂y � eBzx� sin�Kx�� m�ω



4K
�1� cos�2Kx�� (7.6)

can be treated as a perturbation if ω
def� eB~m� P ωc. Ignoring terms quadratic in ω, the

�rst-order correction to the energy is then

aψN TĤTψNf � ħω cos�Kx�e�X~ �L��
N��X�� 1

2
LN�X�� , (7.7)

where L��
N is a generalized Laguerre polynomial. For large Landau level indicesN , the energy

correction, and hence the Landau band width, is approximately proportional to sin�KRc �
π~4�, so that �at bands occur for 2Rc � �λ � 


�. Compared to the situation for an electric

modulation, the magnetoresistance oscillations are shi ed by a quarter period, as observed

in experiments.

Semiclassical Model

Since the commensurability oscillations—unlike the Shubnikov–de Haas-oscillations de-

scribed in Sec. 5.6.3—are not a quantization e�ect, they can also be described by the classical

motion of electrons at the Fermi energy. In such a semiclassical model, one implicitly as-

sumes that transport is ballistic on the scale of the cyclotron orbits, i.e., τQ 1~ωc. Beenak-
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Figure 7.1: One-dimensional guiding centre model

ker [13] has suggested an explanation based on the dri of the guiding centres of individual

electrons. He de�nes the guiding centre of a (nearly) free electron at r having velocity v

as R � r � ẑ � v~ωc, where ẑ is the unit vector in the z-direction. In the presence of a po-

tential modulation V�r� giving rise to an electric �eld E�r� � ©rV�r�~e, the dri of the

guiding centre is vR � Ṙ � ẑ � E�r�~Bz. For a weak potential, the cyclotron orbits remain

approximately circular and the time average of vR can be obtained by integrating the electric

�eld along such orbits:

vR�R� � 1
2π ∫

π


vR�R, φ� dφ � � 1

2πBz
∫

π


ẑ� E �R� ẑ� v�φ�

ωc

	dφ. (7.8)

Beenakker [13] notes that for a one-dimensional potential with period aP Rc the con-

tributions to vY�X� average out for most of the cyclotron orbit and the integral is dominated
by the dri at the extremal points X�Rc as shown in Fig. 7.1; here X and Y denote the com-

ponents ofR. He approximates Eq. (7.8) for a harmonic potential of the formV�r� � V�x� �
V cosKx, and, on averaging over X, �nds

»`vYeX � �V~m�ωc�»K~πRc cos�KRc� π~4�.
¿is dri causes di�usion of the electrons with a di�usion coe�cient ∆Dyy � τ`vYeX . One
can use the Einstein-Smoluchowski relation σ � e�E�D, where �E� is the density of
states, to calculate the e�ect of V�x� on σyy. Since �E� � m�~πħ for a 2deg,

∆σyy � em�τ
πħ

avYfX � eτ

πm� V 
�ħωc� KRc

cos �KRc � π

4
� . (7.9)
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Eq. (7.9) evidently has minima at the values of Rc�Bz� given by Eq. (7.1), and if σxy Q σxxσxy,

these correspond to minima in ρxx � σyy~σxy. Beenakker is thus able to successfully ex-
plain the ρxx oscillations observed experimentally. While the approximation of the di�usion

tensor leads to a small e�ect on ρyy and ρxy, he points out that in a more rigorous calculation

ofD based on the Boltzmann equation oscillations are predicted in ρxx only.

Gerhardts has extended the guiding centre model to arbitrary two-dimensional peri-

odic potentials V�r� � PKVK exp�iK � r� [14] and commensurate magnetic modulations
B
�m�
z �r� � PK BK exp�iK � r� [15,16]. HereK def� 2π�nx~ax , ny~ay�, ax and ay are the periods,

and nx , ny > Z�. VK and BK are the Fourier coe�cients of the electric and magnetic modu-

lations, respectively. Using ∆Dµν � τ`vMvNeXY (averaging over both X and Y), he arrives at

a generalized form of Eq. (7.9):

∆σµν � eτ

πm��ħωc�QK κµν Wsgn�Bz�VKJ�SKSRc�� kFSKS ħeBK

m� J�SKSRc�W , (7.10)

where κxx
def� K

y, κyy
def� K

x , κxy
def� �KxKy, kF is the Fermi wave number, and Jn is the

nth order Bessel function of the �rst kind. While Eq. (7.10) correctly predicts the e�ect of

realistic one-dimensional potential modulations, it cannot fully account for the suppression

of the Weiss oscillations seen with two-dimensional potentials.

¿is suppression can none the less be explained in the semiclassical guiding centre pic-

ture [17]: In a two-dimensional superlattice, a large proportion of the guiding centre orbits

form closed loops, and if the scattering time is su�ciently large, the dri velocity of these

orbits averages to zero. One can calculate this e�ect quantitatively by using a classical Kubo

formula (see Appendix B) to derive amore accurate expression for σ in terms of the average

of the autocorrelation function of the guiding centre velocity. Assuming a constant transport

relaxation time τ and negligible broadening of the Fermi contour,

∆σµν � m�e
πħ ∫

ª


e�t~τavM�t�vN�0�f�EF�
dt, (7.11)

Which is equivalent to Chambers’ formula under the assumptions made here.
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where averaging is now over the phase space at �xed energy EF [15, 17]. Eq. 7.11 can then be

evaluated numerically by simulating a set of guiding centre trajectories corresponding to the

required section of the phase space and computing avN�0�vM�t�f�EF� from it.

7.2.3 Strong Modulations—Antidots

Evidence

Antidot patterns, in which the potential modulation is strong enough to entirely deplete

the carrier system in well-de�ned areas, were �rst reported byWeiss et al. [18] in 1991. ¿ey

used electron beam lithograph (ebl) and reactive ion etching (rie) to create a square array of

holes with diameter d and sub-micron period a in a GaAs–AlxGa�xAs heterostructure; the

high mobility 2deg formed at the junction had a mean free path of several micron at liquid

helium temperatures. ¿e magnetoresistance ρxx of such structures showed a number of

pronounced peaks in the low �eld region and a strong increase near Bz � 0 compared to an

unpatterned sample; in the Hall resistance ρxy, plateau-like features were seen at the same

�eld values. In contrast to the situation for weak potential modulations, the peaks are not

periodic in 1~Bz and cannot be described by a simple formula like Eq. (7.1).

Ballistic transport in antidot arrays has since been studied in considerable detail in GaAs–

AlxGa�xAs heterostructures [19, 20]. ¿e e�ects of large [21] and non-circular [22–24] an-

tidots, as well as generalized rectangular lattices [25] have been investigated. A number of

experiments were performed on InAs–GaSb heterostructures [21], which were chosen for

the absence of a depletion length at exposed InAs surfaces; in these studies, the GaSb cap

layer was very thin and no mobile holes were assumed to be present.

Models

¿emagnetoresistance peaks in antidot lattices were originally explained byWeiss et al. [18]

within the semiclassical pinned orbit model illustrated in Fig. 7.2. In this model, the cyclo-

tron orbits with radius Rc�Bz� are divided into scattering orbits, which collide with antidots,
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(a) Pinned orbits around 1, 2, 4, 9, and 21 antidots,
corresponding toRc~a � 0�50, 0�80, 1�14, 1�70, and
2�53.
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(b) Proportion of pinned orbits as a function of
Rc~a for di�erent values of d~a ranging from 0�5
(bottom) to 0�2 (top) in steps of 0�1. ¿e calcula-
tion followsWeiss et al. [18].

Figure 7.2: Pinned orbit model.

dri ing orbits, which dri without encountering antidots at all, and pinned orbits, which

encircle a number of antidots without colliding with them. It is assumed that pinned or-

bits become localized and do not contribute to conduction since the potential gradient close

to the antidots guides the electrons and counteracts their dri in the Hall �eld E�H�
y . ¿e

proportion of the di�erent types of orbits depends on Rc�Bz�~a and d~a; the fraction of
pinned orbits is high if Rc�Bz� has values that allow the cyclotron orbits to �t exactly around

a speci�c number of antidots. For smaller (rescaled) dot diameters d~a, more pinned orbits
become possible, yet the peak positions stay approximately constant except for the resonance

corresponding to cyclotron orbits encircling two antidots. ¿e magnetoresistance ρxx�Bz�
exhibits peaks at the values of Bz for which the proportion of pinned orbits attains a local

maximum. ¿e pinned orbit model predicts peak positions that are in good agreement with

a large number of experimental results but makes several ad hoc assumptions.

Amore robust approach consists in directly calculating electron trajectories by numerical

integration of the equations of motion for a suitable model potential (see Appendix C). A

chaotic orbit near a commensurability resonance that has been computed in such a way ap-

pears in Fig. 7.3. Provided a set of orbits with an appropriate phase space distribution has

¿e stronger dependence of this peak on d~a is readily understood from geometry, cf. Fig. 7.2(a).
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Figure 7.3: Chaotic electron trajectory in an antidot lattice with lattice constant a for 2Rc � a.

been simulated, the conductivity σ (and hence the resistivity ρ � σ�) can be calculated
from the the velocity autocorrelation using a classical Kubo formula [7] in the same way as

explained in Sec. 7.2.2 for the motion of guiding centres: assuming a constant phenomeno-

logical relaxation time τ, the static conductivity at zero temperature is

σµν � m�e
πħ ∫

ª


e�t~τavµ�t�vν�0�f�EF�
dt, (7.12)

where m� is the e�ective mass of the electrons and averaging is over the phase space at con-
stant energy EF (see Appendix B). Such calculations were originally proposed by Fleisch-

mann et al. [26] and have since been used extensively by other authors [21, 23, 27–29]. ¿ey

are easily adapted to di�erent potentials and can be justi�ed whenever the semiclassical ap-

proximation is valid, i.e., carriers that participate in scattering can be regarded as moving

ballistically with an energy determined by the Fermi level EF.

Fig. 7.4 shows the resistivity simulated for a steep antidot potential. ¿e positions of the

peaks in the diagonal components of ρ (corresponding to the longitudinal resistance) closely

mirror those predicted by the pinned orbit model. ¿e o�-diagonal components (corres-

ponding to the Hall resistance) exhibit corresponding derivations from linearity. For small

dot diameters d~a, step structures similar to those observed in the original experiments [18]
appear, which gradually change to dips for large d~a. A careful consideration of phase-space
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(a) Diagonal components of the resistivity tensor
as a function of Bz for d~a � 0�2 (bottom), 0�3, and
0�4.
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(b) O�-diagonal (Hall) components of the res-
istivity tensor as a function of Bz for d~a � 0�2
(bottom), 0�3, and 0�4. ¿e curves are o�set by 5ρ
for clarity.

Figure 7.4: Calculating the resistivity via semiclassical simulations. B � 2m�vF~ea is the
�eld for which 2Rc � a and ρ � �2πħ�~�m�eτvF� is the Drude resistivity.

maps reveals that the contribution to the resistance due to pinned orbits is actually compar-

atively small. Even if those orbits are disregarded, strong commensurability peaks remain in

the calculated resistivity; they can be attributed to chaotic orbits that lie close to the islands

of stability that are formed by pinned and precessing orbits and have similar dynamics [26].

Further insight into the physical mechanisms underlying the structure of the classical velo-

city autocorrelation function may be gained by classifying chaotic skipping orbits according

to the direction taken a er a small number of hops [27].

7.3 Initial Results

7.3.1 Commensurability Features in the GaSb–InAs–GaSb System

Lateral modulations were �rst realized in hole-rich InAs–GaSb dhets by Javed Rehman

and Beata Kardynał in Oxford [30]. A number of dhet samples with 300Å InAs wells

and 900Å GaSb cap layers were patterned with square antidot lattices by electron beam
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Figure 7.5: 700 nm antidot lattice on an InAs–GaSb dhet (ox3513) with a 300Å InAs well
and a 900Å GaSb cap [30]. ¿e pattern was created by ebl and transferred by
rie, creating holes with an estimated depth of 140nm. ¿e dotted vertical lines
show the expected commensurability peaks for pinned electron orbits around 1, 2,
and 4 antidots calculated using the electron density deduced from the Shubnikov–
de Haas-oscillations [18].

lithography. ¿e patterns were transferred by either rie or wet chemical etching using the

tartrate-based etch described in Sec. 4.2.5; it was estimated that the rie patterns reached

down to the InAs layer, while the wet etched patterns took away approximately 60 of the

GaSb cap layer. Modulation periods between 400 and 800nm were attempted. Given the

limited performance of the available electron beam equipment, periods of 650nm and above

could reliably be achieved with this method.

¿e perpendicular �eld magnetoresistance of these patterned samples, when measured in

a Hall bar geometry at low temperatures (0�3 to 20K), typically exhibits an increased resist-
ance around zero �eld and at least two clearly resolved peaks at low magnetic �eld. At the

magnetic �eld values of the strongest magnetoresistance peaks, the Hall resistance also de-

viates from its behaviour in unpatterned samples. ¿is behaviour is illustrated in Fig. 7.5 for

a typical sample; the features show little reduction in amplitude for temperatures up to 20K.

¿e position of these peaks could be explained by assuming that they result from the com-

mensurability of electron-like orbits with the imposed modulation according to the pinned
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orbit model. ¿e cyclotron radius Rc is calculated from the electron concentration ne by the

free electron expression

Rc � ℓmkF � ħ
º
2πne
eBz

. (7.13)

As explained in Sec 5.5.4, such orbits become possible via magnetic breakdown even though

the Fermi contours in the absence of a magnetic �eld have a more complicated shape owing

to electron–hole mixing.

7.3.2 Behaviour in the Parallel Field

Beata Kardynał and I [31] further investigated the behaviour of these samples in the pres-

ence of an in-plane magnetic �eld. According to the reasoning of Sec. 5.5.3, such a magnetic

�eld was expected to decouple the strong interaction of the electrons in the InAs layer with

the mobile holes in the GaSb layers close to the interface while having only a small e�ect on

the envelope wave functions in the direction perpendicular to the carrier sheets.

As shown in Fig. 7.6, the behaviour di�ered signi�cantly between deep dry etched and

shallow wet etched samples, which both exhibited similar commensurability features in the

absence of an in-plane �eld. While the commensurability peaks disappeared completely in

the wet etched samples for BY C 4�5T, they persisted in the dry etched samples even if a
strong in-plane �eld was present. Both classes of samples showed small shi s in the peak

positions as a function of BY. We tried to explain this behaviour by assuming that the wet-

etched pits, being shallower, only represented an antidot potential for themobile holes in the

GaSb; the electrons in the InAs, being of opposite charge, would experience the antidot sites

as attractive. While the commensurability features could be assigned tomagnetic breakdown

orbits closely following the electron cyclotron orbits, the interaction the electrons and holes

in the absence of an in-plane �eld would cause increased scattering of the electrons at the

antidots. In a large in-plane �eld, removal of the interaction would prevent such a scattering

mechanism and consequently the appearance of commensurability peaks.
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Figure 7.6: Dry and wet etched antidot samples in a parallel �eld [31]. ¿emagnetoresistance
a er background subtraction is shown for several values of the in-plane �eld BY;
the individual curves are shi ed by 25Ω~j. Both samples were produced from
InAs–GaSb dhets with a 300Å InAs well and a 900Å GaSb cap and were pat-
terned with a 650nm period square antidot lattice using ebl. For sample (a), the
pattern was transferred into the dhet (ox3251) using rie and it extends through
the InAs layer; sample (b) was created using isotropic wet chemical etching. ¿e
dotted vertical lines show the expected commensurability peaks for pinned elec-
tron orbits around 1, 2, and 4 antidots calculated using the electron density de-
duced from the Shubnikov–de Haas-oscillations [18].
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Figure 7.7: afmmicrographs of sample ox4531b before and a er deoxidation

7.4 Samples Created by Direct Surface Modification

7.4.1 Overview

Using the local anodization technique described in Chapter 3, I prepared a substantial num-

ber of samples by patterning the surfaces of Hall bars that were created from substrates

containing InAs–GaSb heterostructures. All heterostructures were grown in Oxford using

metal-organic vapour phase epitaxy (movpe) as explained in Chapter 5. ¿e modi�cations,

which had an aspect ratio of 3 � 1, entirely covered Hall bars with a width of 5 or 10 µm
and an aspect ratio of 2 � 1. For the samples discussed in this section, the patterns took the
shape of square arrays of dots with a lattice constant a between 100 and 400nm. ¿e oxide

dots had diameters ranging between 50 and 100nm and were approximately 5 to 10nm high.

¿is height corresponded to the oxidation of 10 to 20nm of a GaSb surface layer and was

the largest vertical extent of the modi�cation that could be achieved with su�cient repro-

ducibility. I further modi�ed a number of samples by chemically dissolving the oxide (see

Chapter 3), leaving pits in place of the dots as seen in Fig. 7.7. Samples of the type discussed

here occasionally exhibited a change in behaviour a er removal from and reintroduction

into a cryogenic experiment. Such degradation was not always seen and was not investig-
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ated systematically in great detail. Given the sensitivity of the electrical properties to the

surface states and the solubility of the GaAs oxide mixture in water, I consider the exposure

to condensation, which could not be avoided entirely with some inserts, a likely cause of the

problem. Another possible issue that is consistent with measurements is physical damage to

the voltage probes.

7.4.2 Double Heterostructures

Patterned double heterostructures comprised both thick (800 to 1,200Å) cap samples with

a high concentration of mobile holes approaching that of the conduction electrons (ox3729,

ox3730, ox3733, ox4256, ox4340) and thin (500 to 700Å) cap samples that lay in the re-

gion of the parameter space for which we previously demonstrated that a change of the cap

layer thickness has a large e�ect on the hole concentration (ox3735, ox4434, ox4530, ox4531,

ox4532). While it was in doubt whether the surface modi�cation with the atomic force mi-

croscope (afm) would create a su�cient potential modulation at the InAs layer to produce

a measurable e�ect in the former set of samples, the previous success with partial removal

of the cap layer reported in Sec. 7.3 and the sensitivity of the carrier concentration to the cap

thickness led us to expect substantial modulation e�ects in the latter set—a er all, up to 30

of the cap layer could be a�ected by the anodization.

None the less, magnetotransport measurements at 0�5 to 4�2K following the procedure

laid down in Chapter 4 revealed no compelling evidence for commensurability features in

any of these samples. While various background substitution approaches showed small re-

producible resistivity �uctuations above the noise threshold, these were not correlated with

the surface modi�cation; the behaviour of the magnetoresistance and Hall resistance was

qualitatively similar for both patterned and control Hall bars. ¿e outcome of these experi-

ments is summarized in Table 7.1, which gives a limited number of quantitative results in a

concise form. Particular attention is given to the electron concentration, as this quantity is

Chapter 5 explains the in�uence of the surface states and the cap layer thickness on the electronic properties
of the dhet in detail.
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Control Area Patterned Area³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ ³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Substrate tcap Sample a T ne ρxx�� ne ρxx��

(Å) (nm) (K) (/cm) (Ω/j) (/cm) (Ω/j)
ox ,

¢̈̈̈�̈̈̈¤
a  � �  � 
b  � �  � 
c  � �  � 

ox  a  � �  � 

ox , � a  � �  � 
b  � �  � 

ox  a  � �  � 
ox , a  � �  � 
ox  a  � �  � 

ox ,

¢̈̈̈�̈̈̈¤
a  � �  � 
b  � �  � 
c, deox.  � �  � 

ox 

¢̈̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈̈
�̈̈̈̈̈̈̈̈
¨̈̈̈̈̈̈̈̈̈̈
¤

a  � �  � 
a   �  � 
a   �  � 
a   —  — 
b  � �  � 
b   �  � 
b   �  � 
b   —  — 
c  � �  � 
d  � �  � 

ox 

¢̈̈̈̈̈�̈̈̈̈̈¤
a, deox.  � �  � 
b, deox.  � �  � 
c, deox.  � �  � 
c, deox.  � �  � 

ox  � a  � �  � 
b  � �  � 

Table 7.1: Direct surfacemodi�cation. ¿e electron concentration ne was calculated from the
frequency of the Shubnikov-de Haas-oscillations in the perpendicular �eld mag-
netoresistance; it is accurate to about 2� 10 cm�. ¿e absolute error in the res-
istivity is determined by the uncertainty in the precise shape and e�ective aspect
ratio of the Hall bar (around 10); the error in the resistance measurement is neg-
ligible in comparison.
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susceptible to the presence of an electrostatic potential and can be extracted from the period

of the low-�eld Shubnikov–de Haas-oscillations directly. In contrast, the resistivity depends

on the position of the Fermi energy with respect to the minigap as well as on the carrier

concentrations and mobilities.

To investigate the possibility of an average e�ect of the surfacemodi�cation—such as a net

change in the Fermi level pinning or reduced mobilities resulting from increased random

scattering—I have collected the number of samples showing a speci�c qualitative change in

the observed quantities in Table 7.2. Changes in the electron concentration, the zero �eld

sheet resistivity, and the amplitude of the Shubnikov–de Haas-oscillations are listed for vari-

ous groups of experiments. ¿ese results con�rm the impression given by the data of Table 7.1

in that they do not support any hypothetical trends.

7.4.3 InAs Surface

It is well known that in many circumstances a surface accumulation layer forms at InAs

surfaces coveredwith native oxide. Wehave created a InAs–GaSb single heterostructurewith

an exposed InAs top surface (ox4338) by omitting theGaSb cap layer from themovpe growth

process described in Chapter 5. In such a structure, a sheet of mobile electrons appears

that is con�ned to the InAs layer. Since it is located directly at the surface, this quasi-two-

dimensional electron gas (2deg) may be locally depleted by a shallow surface modi�cation

technique such as lao. Indeed, this has been demonstrated by Sasa et al. [32, 33] in earlier

work on samples of a similar type.

Magnetotransport traces of sample ox4338 showed spin-split Shubnikov–de Haas-oscil-

lation peaks and no strong positive magnetoresistance or curvature in the Hall resistance,

as expected for a 2deg. ¿e two-dimensional electron density was 13�5 � 0�2 � 10 cm�,
while the mobility was 18,000� 1,000cm~�Vs�. From this substrate, I prepared and meas-

ured at 4�2K two samples containing square antidot patterns with a lattice period of 200nm

following the approach detailed in Sec. 7.4.2. ¿e magnetoresistance of both the patterned
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a � nm   
T � �K   
T � �K   
T C K   
all samples   

(c) Amplitude of Shubnikov–de Haas-oscillations

A
�pat�
SdH A A

�ctrl�
SdH A

�pat�
SdH � A

�ctrl�
SdH A

�pat�
SdH � A

�ctrl�
SdH

tcap B Å   
tcap C Å   
a B nm   
a � nm   
T � �K   
T � �K   
T C K   
all samples   

Table 7.2: Trends in lao-modi�ed samples, in numbers of samples satisfying the given condi-
tions. Di�erences as small as 10~cm and 1Ω~j have been taken into account, as
small changes in the period of the Shubnikov–deHaas-oscillations can be deduced
qualitatively by comparing plots and the e�ective aspect ratio of two identically
manufactured Hall bars on the same sample is consistent. If conservative estim-
ates for the absolute errors are used, there is no signi�cant change in any of the
experiments.
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and the control area exhibited a small (6) peak at Bz � 0 and reproducible �uctuations.

However, no correlation between such �uctuations and the presence or absence of the lateral

dot superlattice was observed.

7.5 Samples Created by Reactive Ion Etching

7.5.1 Overview

¿anks to the help of Geb Jones, who performed the electron beam exposure in Cambridge,

I was also able to create a limited number of deep rie etched samples which improve on

the resolution previously attained for such structures in our group in Oxford. A number of

square antidot patterns with a nominal lattice constant between 80 and 400nmwere de�ned

on Hall bars prepared from di�erent substrates and transferred into the semiconductors by

means of plasma etching; the exact fabrication method is laid down in Chapter 4. Owing to

partial underexposure and peeling of the masks in the rie, the pattern transfer regrettably

did not succeed for the smaller pitch patterns. In the following I shall describe two samples

with a period of 400nm and a physical antidot diameter d~a of 0�25� 0�05 determined by
afmmeasurements, which exhibit notable magnetoresistance features.

Sample ox4531r was created from the dhet ox4531 with a 300Å InAs well and a 500Å

GaSb cap. ¿emasked sample was placed into a plasma etcher for a su�cient time to remove

approximately 140nm of the semiconductor as estimated from the previously determined

etch rates. ¿e pattern transfer was veri�ed with the help of an afm, establishing a min-

imum hole etch depth of 30 � 5 nm and con�rming the larger estimated etch depth at the

edges of macroscopic mask features. While the observed antidot depth was a�ected by �nite

tip size e�ects, there was considerable evidence from other samples of the same series that

the etch depth of holes was less than that of larger features; the di�erence was attributed to

underexposure resulting in incomplete development of the antidots. As a consequence, an
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uncertainty remains regarding the actual etch depth, which must lie between the given lim-

its. A er processing, the unpatterned control area at 4�2K had a sheet resistivity of 71�7Ω~j
and an electron concentration determined from the period of the Shubnikov–de Haas-os-

cillations as 9�8�0�2� 10 cm�. In the presence of a magnetic �eld BY � 18T parallel to the

surface of the sample, the resistivity dropped to approximately 80 of its zero �eld value.

Using the high parallel �eld value, an electron mobility of at least 120,000 cm~�Vs� and a
mean free path of at least 2�0 µm were estimated. ¿e electron concentration was signi�c-

antly increased compared to samples with a similar InAs thickness that were known to have

comparable electron and hole concentrations [34]. None the less, the positive perpendicu-

lar �eld magnetoresistance indicated the presence of mobile electron holes; comparing the

curvature of the magnetoresistance to the Drude model of Sec. 5.6.1 led to an e�ective hole

concentration of 1�6� 10 cm�.
Sample ox4532�r was based on the substrate ox4532 with a 300Å InAs well and a 680Å

GaSb cap. It was initially etched under the same conditions as ox4531; there was no signi-

�cant change in the magnetoresistance as a result of the pattern transfer. ¿e sample was

then subjected to another etch step designed to remove an additional 30nm of the semi-

conductor; in the absence of an etch mask, one expects the same amount of material to

be removed from the �at surface as from the bottom of the antidot pits. Further obser-

vation in the afm con�rmed that the antidot pattern was still well resolved. At 4�2K, the
unpatterned control area of the 380Å cap sample ox4532� created by this procedure had a
sheet resistivity of 82 � 8Ω~j and an electron concentration of 12�0 � 0�2 � 10 cm�. In
the presence of a parallel magnetic �eld BY � 18T, the resistivity dropped to approxim-

ately 73 of its zero �eld value. ¿e electron mobility and the mean free path estimated

from the high parallel �eld value were at least 85,000cm~�Vs� and 1�5 µm, respectively.
Despite the higher electron density re�ecting the reduced cap thickness, the dhet still be-

haved as a two-carrier system; the e�ective hole concentration from the Drude model was

1�6� 10 cm�.
As the minigap is not taken into account, this value does not necessarily agree with the actual hole density.
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7.5.2 Low Field Commensurability Peaks

Temperature Dependence

¿e low �eld magnetoresistivity of sample ox4531r is shown in Fig. 7.8 for a number of tem-

peratures between 0�5 and 20�0K. Compared to the control area covered in Fig. 7.8(b), the
modulated dhet of Fig. 7.8(a) had a signi�cantly increased zero �eld resistivity (117Ω~j
compared to 71Ω~j). ¿e Shubnikov–de Haas-oscillation amplitude was reduced and the

electron concentration increased from9�8�0�2�10 cm� to 13�0�0�5�10 cm�. ¿e shape

of ρxx�Bz� as a function of the magnetic �eld di�ered substantially, being �atter around the
origin and exhibiting a single broad peak (α) around Bz � 0�8T for temperatures up to 10K.
¿e peak is more readily seen in Fig. 7.8(c), which displays the magnetoresistivity a er back-

ground subtraction. Its position is consistent with the commensurability between the elec-

tron cyclotron orbit of a nearly-free electron gas with the observed electron concentration

and the period of the arti�cial superlattice. In the pinned orbit model, this corresponds to

an orbit trapped at a single antidot site; at the magnetic �eld values corresponding to similar

orbits encircling larger groups of antidots, no features were observed in the magnetoresist-

ance.

¿e corresponding data for ox4532�r is presented in Fig. 7.9. Comparing patterned and
control Hall bars, the electron concentration increased from 12�0� 0�2� 10 cm� to 13�4�
0�5 � 10 cm� and the amplitude of the Shubnikov–de Haas-oscillations was reduced. In
this sample, the absolute zero �eld resistivity was similar for the patterned (74Ω~j at 4�2K)
and the control region (82Ω~j at 4�2K). Even so, the magnetoresistivity changed as a result
of the modulation in a way similar to that seen in ox4531r, becoming signi�cantly �atter

around zero �eld and exhibiting additional features absent from the control measurements

of Fig. 7.9(b). A more complicated peak structure emerged, with a main peak (α) persisting

up to 10K at approximately 0�7T and an additional higher �eld peak (β) disappearing at

4�2K around 2T. A third peak (γ) might tentatively be assigned to the area between those

two features, which exhibited a small resistivity rise at low temperatures. ¿e peaks do not
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Figure 7.8: Temperature dependence of the low �eld magnetoresistivity of sample ox4531r.
¿e symmetric part of the measured longitudinal resistivity is shown for (from
bottom to top) 0�5, 1�5, 2�5, 4�2, 7�0, 10�0, 15�0, and 20�0K; the individual curves are
o�set by 10Ω~j in (a) and (b) and 3Ω~j in (c) for clarity. Dotted vertical lines
show the commensurability condition for pinned electron orbits around 1, 2, and
4 antidots calculated using an electron concentration of 13�0� 10 cm�.

186



7 Antidot Samples















 �  �  � 


ρ
x
x
/�Ω/j

�

Bz/T

�K

�K

α
β

(a) Patterned area. ¿e dashed line corresponds to
the unmodi�ed dhet at 1�5K.















 �  �  � 

ρ
x
x
/�Ω/j

�

Bz/T

�K
�K

(b) Control area

�












 �  �  � 



∆
ρ
x
x
/�Ω/j

�

Bz/T

�K

�K

α β�γ�
(c) Patterned area a er background subtraction

Figure 7.9: Temperature dependence of the low �eld magnetoresistivity of sample ox4532�r.
¿e symmetric part of the measured longitudinal resistivity is shown for (from
bottom to top) 0�5, 1�5, 2�5, 4�2, 7�0, 10�0, 15�0, and 20�0K; the individual curves are
o�set by 10Ω~j in (a) and (b) and 3Ω~j in (c) for clarity. Dotted vertical lines
show the commensurability condition for pinned electron orbits around 1, 2, and
4 antidots calculated using an electron concentration of 13�2� 10 cm�.
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Sample n
�SdH�
e RH n

�RH�
e

(/cm) (Ω/T) (/cm)

oxr �  �
ox (control) �  �
ox�r �  �
ox� (control) �  �

Table 7.3: Hall e�ect in ox4531r and ox4532�r
directly correspond to commensurability conditions for the electron cyclotron radius Rc,

although the primary peak (α) occurs in the magnetic �eld range where commensurability

features are expected. At the position of peak (β), however, 2Rc is considerably smaller than

the superlattice spacing.

Neither ox4531r nor ox4532�r exhibited any signi�cant features in the Hall resistivity

ρxy�Bz� at the position of the peaks in ρxx�Bz�. ¿e e�ective Hall coe�cient near Bz � 0

di�ered between the modulated and the unmodulated Hall bars. As shown in Table 7.3, the

changes were qualitatively consistent with the di�erence in the electron concentrations de-

termined from the period of the Shubnikov–de Haas-oscillations. Generally, the calculation

from the Hall coe�cient led to a higher estimate of the electron density; this e�ect was more

prominent for the modulated dhets and in the case of sample ox4532�.
Parallel Field Dependence

As the presence of a magnetic �eld in the plane of the dhet a�ects the formation of the

minigap resulting from the mixing of the electron and hole states (cf. Sec. 5.5.3) and can in-

�uence the commensurability peaks seen in somemodulated samples (cf. Sec. 7.3.2), I meas-

ured the Bz-magnetoresistivity of ox4531 and ox4532� in various parallel magnetic �elds BY
up to 15T as well as the BY-magnetoresistivity at Bz � 0. In these experiments, BY was par-
allel to the direction of the excitation current and the rotating setup described in Sec. 4.3.1

was used.

¿e data for sample ox4531r appears in Fig. 7.10. ¿e overall shape of the magnetores-
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Figure 7.10: Magnetoresistivity of sample ox4531r in a parallel �eld. ¿e longitudinal res-
istivity measured at 4�2K while rotating the sample towards BY � 0 is shown for
(from bottom to top) BY � 0, 5, 10, and 15T; the individual plots are shi ed by
15Ω~j in (a) and 4Ωj in (c) for clarity.
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istivity, which is seen in Fig. 7.10(a) remains similar. ¿e position and relative magnitude of

the commensurability peak (α), best seen a er background subtraction in Fig. 7.10(c), did

not change signi�cantly in the parallel �eld. ¿e shape of the peak appeared di�erent, but

this may be at least partly attributable to the additional noise appearing in the parallel �eld

measurement as a result of the mechanical movement of the sample. Fig. 7.10(b) shows the

resistivity of themodulatedHall bar as a function of the parallel �eld. ¿ere was a signi�cant

negative magnetoresistance, with ρxx�BY� dropping to 81 of its zero �eld value at 18T; at

approximately 5T it exhibited a local maximum. It is worth noticing that the resistivity did

not plateau at the largest observed value of BY but continued to decrease.
¿e situation was more complicated in the case of ox4532�r, as can be seen in Fig. 7.11.

¿e well-de�ned low �eld peak (α) did not persist in the presence of an in-plane �eld; at

5T and 10T, a small peak at Bz � 1T was seen instead, while a broad peak similar to the

one seen at BY � 0T reappeared at 15T. However, these features were not discernible in

all traces. In contrast, the higher �eld peak (β) maintained a similar size for all values of

the parallel �eld but moved to continuously lower Bz as BY increased. ¿e small feature (γ)

around Bz � 1�3T persistedwith reduced visibility. While itsmagnitude only barely exceeded

the detection threshold given by the noise level on the one hand and the scale of repeatable

�uctuations seen in all DHETs on the other hand, it was observable inmost low temperature

traces. ¿e BY-magnetoresistivity shown in Fig. 7.11(b) resembled that of ox4531r, decreasing
continuously with increasing BY. At BY � 18T, it dropped to approximately 75 of its zero

�eld value, but did not reach a plateau.

7.5.3 Behaviour in a High Perpendicular Field

Figs. 7.12 and 7.13 show ρxx�Bz� and ρxy�Bz� up to Bz � 18T for both the patterned and

unpatterned areas of ox4531r and ox4532�r. In both samples, the Shubnikov–de Haas-

oscillations in ρxx�Bz� and the steps in ρxy�Bz�, which mark the onset of Hall plateaux, were
less sharply resolved in the modulated regions, while their period in 1~Bz was increased.
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Figure 7.11: Magnetoresistivity of ox4532�r in a parallel �eld. ¿e longitudinal resistivity
measured at 4�2K while rotating the sample towards BY � 0 is shown for (from
bottom to top) BY � 0, 5, 10, and 15T; the individual plots are shi ed by 15Ω~j
in (a) and 4Ωj in (c) for clarity.
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Figure 7.12: High �eld magnetoresistivity of sample ox4531r. ¿e dashed curves show the
data for the unmodi�ed dhet.
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Figure 7.13: High �eld magnetoresistivity of sample ox4532�r at 0�5K. ¿e dashed curves
show the data for the unpatterned control area.
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¿eHall resistivity, with the exception of these quantization features, was nearly linear over

the entire �eld range; its slope was reduced as an e�ect of the antidot lattice. Apart from

these observation, the high �eld measurements taken on the patterned Hall bars did not

show qualitatively di�erent behaviour. ¿e Hall resistivity showed a monotonic step-like

behaviourwithout any indication of localminima, as expected from an electron-richdhet.

7.6 Discussion

7.6.1 General Remarks

In the lao-patterned samples, if taken collectively, there is no systematic change in themag-

netotransport properties that can unambiguously be attributed to the imposed lateral super-

lattice. Since the dhets used for these experiments are similar or identical to ones which do

show such alterations if modi�ed by a di�erent method, and the inferred mean free paths

are considerably longer than the attempted modulation periods, it must be concluded that

the e�ective potential at the carrier sheets in such samples is too weak to bring about ameas-

urable e�ect. In contrast, the samples prepared by masking and etching show peaks in the

magnetoresistance at the approximate �eld values where the size of the electron cyclotron or-

bit is commensuratewith a dimension of the superlattice. ¿e samplesox4531r andox4532�r
only show a single commensurability peak, and inmost experiments the agreement between

observed and predicted peak position is not exact.

Several factors contribute to this discrepancy. First of all, since the background that has

been subtracted to compensate for the strong positive magnetoresistance is not known a

priori there is an inherent uncertainty in the measured peak position. ¿e prediction to

which the position is compared depends on the chosen analytical model and the measured

electron concentration.

See also the discussion in Sec. 6.4.1.
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¿e model itself makes some simpli�cations, and although the commensurability condi-

tions deduced from the pinned orbit picture agree well with a large range of experimental

and simulated magnetoresistance traces, more realistic calculations do not always show an

exact agreement. In general, the positions of the peaks relative to the �eld at which 2Rc � a

change by a small amount with d~a; calculations based on simulated trajectories suggest
a change of approximately 3 between d~a � 0�2 and d~a � 0�4. ¿e position will also

depend on the precise shapes of the modulation potential and the electron dispersion.

¿e electron concentration is determined from the period of the low-�eld Shubnikov–

de Haas-oscillations arising from the same magnetic breakdown orbits as the commensur-

ability features; the calculation is quite reliable as it does not depend on the knowledge of

other sample parameters. However, the �eld range that can be used is limited to the region

between the onset of detectable oscillations at 0�4 to 1T (depending on the electronmobility
and the temperature) and the end of the validity of the description in terms of Shubnikov–

de Haas-oscillations corresponding to electron orbits at 1 to 4T (depending on the electron–

hole ratio) [34]. In practice, the electron concentrations determined using Eq. (5.32) have an

uncertainty between 2 to 8 depending on the amplitude of the oscillations

More importantly, the calculation of the commensurability condition assumes a spatially

uniform electron density, whichmay not accurately re�ect the situation between the antidots

in the patterned samples. Following the considerations put forward in Sec. 7.6.3 below, an

upper bound on the variation of the electron densitiy in the rie-etched samples is given by

the magnitude of the total increase of 12 to 33 caused by the patterning.

¿e parallel �eld magnetoresistance of ox4531r and ox4532�r, shown in Figs. 7.10(b) and
7.11(b), respectively, di�ers considerably from thicker cap dhets such as those discussed in

Sec. 7.3, which show a behaviour close to the simulated trace of Fig. 5.8 in Chapter 5. While

there is still a signi�cant negative magnetoresistance, indicating the presence of a mixing

gap close to the Fermi energy, the resistance drops by a smaller fraction in the region up

For �nite temperatures and interaction strengths, there is still an e�ect even if EF � E exceeds the band
o�set, so the negative magnetoresistance does not necessarily prove the presence of mobile holes.
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Figure 7.14: Magnetoresistance of thin-cap samples in a parallel magnetic �eld, calculated at
T � 4�2K for adhetwith Eg � 80meVand EF�E � 78meV. ¿e resistivity ρxx
parallel to the in-plane �eld is shown by solid lines, whereas ρyy is shown with
dashed lines. ¿e single dotted line is the experimental ρxx of the control area of
ox4532�r.

to BY � 18T and continues to decrease instead of saturating. ¿e electron concentration of

9�8� 10 cm� in the unpatterned region of sample ox4531r indicates a Fermi level 78meV
above the bottom of the electron band. To match a hole concentration of 1�6� 10 cm� at
the same time, the band o�set has to be 80meV. Using these values, I have calculated several

theoretical magnetoresistance traces in Fig. 7.14, varying the electron-hole coupling ∆ and

the electron-hole separation δz. ¿e larger band o�set causes the e�ect of the minigap to

extend over a larger �eld region compared to Fig. 5.8; for larger interaction strengths and

smaller electron–hole separations the �eld at which the resistivity saturates moves to even

higher values. ¿e calculations predict a strong initial increase in the resistivity ρxx parallel

to the in-plane �eld as the hole Fermi contour approaches the electron Fermi contour from

the inside. ¿is increase is small or absent in the experimental curves, which resemble more

closely the calculations for ρyy. ¿e model may not accurately re�ect the situation in the
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dhet, or the peak may be smeared out by misalignment between current and magnetic �eld

or by local changes in the electron density.

¿e 2deg forming in the InAs layer at the surface of the single heterostructure ox4338 has

an electron mobility µe much lower than that seen in a comparable dhet: as it is located

directly at the surface, the electron sheet is very susceptible to scattering from imperfections

at the interface. Using the measured values for µe and the sheet density ne, one calculates

a mean free path ℓf of 350nm, which is only slightly larger than the modulation period of

200nm. Under these circumstances, the absence of commensurability features should not

come as a surprise. While there is every reason to assume that an antidot potential was

created in the 2deg, the electrons will on average be scattered out of a cyclotron orbit before

they can complete it, rendering the pinning mechanism ine�ective. It became quickly clear

that progress could only be made by procuring higher mobility heterostructures. As similar

antidot lattices in pure 2degs had been studied in considerable detail and lao of InAs �lms

had already been demonstrated, I did not consider pursuing this idea a high priority.

7.6.2 Holes

Because of the presence of mobile holes and the peculiar band arrangement, the Fermi con-

tour in InAs–GaSb dhets has a complex shape resulting from the mixing of the electron

and hole dispersion relations and a variety of orbits become possible. So far the discus-

sion has focused on nearly-free electron-like orbits, as they can successfully explain the low-

�eld Shubnikov–de Haas-oscillations and the commensurability peaks; they are recovered

in the electron–hole system if the Fermi level intersects the dispersion relation away from

the minigap or via magnetic breakdown (cf. Sec. 5.5.4) if the cyclotron energy is comparable

to the minigap. ¿ere is little direct evidence of cyclotron motion corresponding to other

sections of the Fermi contour [34].

See Sec. 5.5.3 for a discussion of the details.
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Purely hole-like trajectories can be considered directly in the numerical framework de-

veloped for electron cyclotron orbits by replacing the parabolic electron dispersion by an

anisotropic relation re�ecting the hole energy, such as the semi-empirical model introduced

in Sec. 5.5.3. As shown in Fig. 7.15, such calculations predict a peak in the hole component of

the resistivity at the magnetic �eld where the orbit size approximately equals the superlattice

spacing, similar to the situation in a 2deg. ¿e higher order peaks are strongly a�ected by the

anisotropy. For the alignment assumed in Fig. 7.15, which to within a few degrees re�ects that

in the actual samples, the peak corresponding to orbits encircling 2 antidots is completely

absent, whereas peaks corresponding to several larger orbits are clearly resolved.

¿e rough estimate of the hole concentration of 1�6 � 10 cm�, obtained from the non-

interacting Drude model for both ox4531r and ox4532�r, corresponds to B � 0�33T. No
feature is seen in the magnetoresistance traces around this �eld strength. However, the hole

mean free path in dhets of the type investigated here is su�ciently lower than the electron

mean free path that the low Bz conductivity is dominated by electronic transport and there

is little evidence of Shubnikov–de Haas-oscillations corresponding to cyclotron orbits other

than the nearly-free-electron one. It is therefore not surprising that the e�ects of the com-

mensurability of hole-like orbits with the antidot superlattice on the overall conductivity are

not strong enough be measurable.

7.6.3 Surface States, Potential Strength, and Electron-Hole Interaction

In the case of the intermediate sample ox4532r, it is safe to assume that the antidot etch

depth lay between the lower bond of 30nm established by afmmeasurements and an upper

bond of 68nmgiven by the cap thickness, removingmore than 45 but less than 100of the

GaSb cap. ¿e sample as originally prepared did not exhibit any characteristic antidot e�ects,

but further etching led to the appearance of such features. ¿e modi�ed sample ox4532�r
has a similar surface structure in the afmmeasurement but a signi�cantly increased electron

See also Appendix C for the details of the calculation.
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Figure 7.15: Anisotropic hole gas resistivity from semiclassical simulations. It is assumed that
the hole gas is parallel to the �100� planes, while the superlattice is aligned to the`100e family of crystallographic directions. B is the �eld for which the cyclotron
orbit area is πa and ρ � �πħ�~�eτEF�.
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density deduced from low temperaturemagnetotransport measurements, in agreement with

the expected removal of a similar amount of material from both the original surface and the

bottom of the etch pits. Based on these observations, the holes now remove at least 80 of

the reduced cap, but may extend through the InAs well. Sample ox4531r was etched under

the same conditions; it is therefore plausible, but not inexorable, that a similar upper limit

to the hole etch depth applies. In this case, at least 60 of the cap have been removed, but

the antidots may extend into the InAs layer.

¿ese results indicate that locally moving the GaSb surface towards the InAs well by as

much as half the original distance in itself is insu�cient to elicit a measurable e�ect on the

electronic properties of the embedded dhet. ¿is is true even if the bottom surfaces of the

pits lie much closer to the carrier sheets than the lattice constant of the imposed pattern,

and wholesale erosion of a comparable amount of the sample surface by the same chemical

procedure has a demonstrable in�uence on the carrier densities. ¿is agrees with the fact

that the direct oxidation of the afm, which, as a surface modi�cation technique, produces

similar or shallower features, fails to create a su�ciently strong modulation of the carrier

sheets to induce a signi�cant change. On the other hand, it at �rst seems to be at odds with

the behaviour of shallow wet etched samples reported in 7.3.1, despite the fact that these were

created from substrates with thicker caps and the potential modulation set up by the surface

states was further away from the InAs well.

While the larger dot diameter of the samples created by the nearly isotropic wet chemical

etch as well as the larger superlattice constant may play a rôle, the probable explanation

of the contradiction is a di�erent one. Whereas the in�uence of the surface states on the

carrier gases is well understood in general and there is considerable evidence supporting

the assumption that the Fermi level at oxide passivated GaSb surfaces is pinned above its

bulk value [34–36], the precise level of the pinning is expected to be sensitive to the kind

of oxide and the presence of contaminations, which in turn can and will vary depending

on the fabrication history. ¿is can for example be seen in the data for ox3730 presented

in Table 7.1: A er removal of the oxide and subsequent reoxidation the electron density is
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decreased, although the procedure reduces the cap thickness by a small amount.

Bothox4531r andox4532�r showa signi�cant increase of 23 and 12, respectively, in the
two-dimensional electron density in the patterned versus the control Hall bars. In contrast,

the complete depletion of antidots with d � a~3 would lead to a decrease of the carrier
concentration of 9. Since the processing is otherwise identical, the uncertainty associated

with the incomplete knowledge of the exact surface states can be largely avoided, so that the

antidot pattern must be directly responsible for the e�ect. ¿e likely mechanism by which it

is caused is the Fermi level pinning at the exposed surface of the etch pits. ¿is may be the

bottom surface if the pits do not extend into the InAs, but also the side walls. In either case, a

signi�cant smooth electric potential modulation is present, either exclusively or in addition

to the steep antidot potential, leading to a more complicated e�ective potential landscape.

Fig. 7.16 illustrates schematically the e�ect of di�erent modulations on the e�ective potential

experienced by both electrons and holes.

As noted in Sec. 7.3.2, the commensurability peaks in shallow wet etched samples disap-

pear in the presence of a magnetic �eld parallel to the surface. A similar observation can be

made for the fundamental peak in ox4532�r, although the situation at intermediate �elds is
more di�cult to interpret and there is evidence that the peak re-emerges at the highest �elds

investigated. ¿is behaviour was explained by di�erent potentials for electrons and holes,

corresponding to the situation of Fig. 7.16(a). ¿e potential experienced by the electrons

would by itself be insu�cient to produce strong magnetoresistance peaks, which would be

prompted by the local depletion of the interacting hole gas; if the interaction was removed

by the parallel �eld (cf. Sec. 5.5.3), the peaks would disappear. Both in these samples and

in ox4532�r, the features disappear in a considerably smaller �eld than required to fully de-
couple the electrons and holes; moreover, the exact mechanism by which the electron-hole

interaction causes strong commensurability features absent from the non-interacting 2deg

has not been explained satisfactorily. In the light of these problems as well as the small hole

concentration and the peak structure in the BY � 15T trace, one cannot necessarily conclude

that the parallel �eld behaviour of ox4532�r implies a shallow etch depth and a strong contri-

200



7 Antidot Samples



 �  �  �  � 

E

x/a

(a) Electrostatic potential



 �  �  �  � 

E

x/a

(b) Antidots



 �  �  �  � 

E

x/a

(c) Mixed potential

Figure 7.16: E�ective potentials for electrons (solid lines) and holes (dashed lines) along a
two-dimensional cross-section through �ve antidots at x � , a, . . . , a. ¿e
electrostatic potential is assumed to be of sinusoidal form and drop to zero
between antidots.
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bution of the electron–hole interaction to the observed structure in the magnetoresistivity.

A di�erent mechanism by which the parallel magnetic �eld may a�ect the size of the com-

mensurability maxima is the size of the gaps in k-space through which carriers must tunnel

to complete electron-like magnetic breakdown orbits. ¿e cyclotron energy ħωc becomes

similar to the minigap ∆ � 7meV around Bz � 1T and the feasibility of full electron orbits

giving rise to the magnetoresistivity features can be expected to be sensitive to the gap size

in this �eld region.

7.6.4 Peak Structure above the Highest Electron Commensurability Field

An interesting and unexpected feature of the magnetoresistance of the sample ox4532�r is
the appearance at low temperatures of additional structure above themagnetic �eld value for

which the diameter of the electron cyclotron orbit equals the superlattice spacing. As illus-

trated in Fig. 7.17, the additional peak is likely a result of the potential modulation; while the

control sample shows a small dip on the high �eld side of the peak position which may also

contribute to the measured magnetoresistivity of the patterned Hall bar, the latter exhibits

structure that is clearly distinguishable before background subtraction and has no counter-

part in the control measurement.

In the pinned orbit model (cf. Fig. 7.2), the proportion of pinned orbits decreases in this

region until they become impossible where Rc falls below the antidot diameter d. In the

region of the putative resistivity peak, all possible orbits are much smaller than a, and an ex-

planation based on commensurability e�ects is problematic. In contrast, earlier experiments

on antidot arrays in 2degs have revealed peaks in this �eld range in the special cases of large

diameter [21] or asymmetric [22] antidots. ¿e temperature dependence of these features

follows that of the fundamental peak at 2Rc � a.

¿e observations have been explained by the contribution of di�erent classes of skipping

orbits to the conductivity. Eroms et al. [21] have published semiclassical simulations follow-

ing the Ansatz of Sec. 7.2.3 that predict a local magnetoresistance maximum around 2�5B
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Figure 7.17: Comparison of the �K magnetoresistivity in sample ox4532�r. ¿e dashed
curves show the data for the unpatterned control area.

for large diameter antidots with d~a � 0�66. It has been attributed to quasi-periodic rosette-
shaped orbits trapped at single antidots as seen in Fig. 7.18(b). As the simulated resistivities in

Fig. 7.18(a) show, I have not been able to reproduce this high �eld peak, although preliminary

calculations have yielded orbits and phase space cross sections similar to those reported. At

BQ B, most orbits are periodic or quasi-periodic with a slowly decaying autocorrelation

function, and the calculated conductivity is sensitive to the accuracy of the simulation, o en

exhibiting oscillations in B which depend on the time step and cut-o�. In all simulations, a

further peak develops just above the fundamental peak at Bz � B, which can be identi�ed

with orbits trapped in between antidots; this e�ect is already indicated in the smaller dia-

meter data of Fig. 7.4(a). ¿ere is no corresponding feature in ox4532�r, but the shoulder
observed on the commensurability peak in the magnetoresistivity of several larger period

antidot lattices on InAs–GaSb dhets may be attributed to trapped orbits of this kind [30].

In ox4532�r, the high �eld peak (β) disappears at a relatively low temperature and changes
its position in a parallel magnetic �eld, which is not explained by a semiclassical theory of

rosette-shaped orbits. Moreover, the physical etch pit diameter of 0�25a is much smaller than
the antidot size at which the e�ect is predicted.

Alternatively, a more complicated e�ective potential similar to that of Fig. 7.16(c) may lie

at the origin of the additional higher �eld structure. Because of the signi�cant e�ect of the
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Figure 7.18: Calculations for large diameter antidot lattices with d/a � �. B � m�vF/ea
is the �eld for which Rc � a and ρ � �πħ�/�m�eτvF� is the Drude resistiv-
ity.

surface states, it is probable that the potential between antidots is not completely �at, and in

this case smaller scale variations are present that could lead to resonances at higher magnetic

�elds corresponding to smaller cyclotron radii. Halving the distance along the line between

two antidots corresponds to a cyclotron radius at twice the magnetic �eld value B of the

fundamental peak, whereas halving the distance along the diagonal of a square formed by

four antidots matches a �eld of
º
2B. While the estimate is overly simplistic and one would

not necessarily expect commensurability peaks at exactly these magnetic �elds, this covers

the range of the observed features.

7.7 Conclusions

If modulated by a su�ciently strong two-dimensional superlattice potential with a lattice

constant a in the range λF � a � ℓf , high mobility InAs–GaSb dhets, which contain sheets
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of mobile electrons and holes, typically show commensurability peaks in the perpendicular

�eld magnetoresistance very similar to those observed in pure 2degs. ¿ese features persist

for temperatures in excess of 20K for thick cap samples and disappear above 10K in lower

mobility thin cap samples. ¿e peak positions are compatible with electron-like orbits that

occur as a result ofmagnetic breakdown and alsomanifest themselves in Shubnikov–deHaas

quantum oscillations.

Despite the strong interaction between the electrons and holes, the e�ect of the latter is not

apparent. It has been probed by applying an additional magnetic �eld component parallel

to the plane of the carrier sheets, which is known to shi the electron and hole dispersion

relations inmomentum space. Depending on the sample, the peaks in themagnetoresistance

are either una�ected or disappear at a parallel magnetic �eld lower than that required to

completely decouple electrons and holes. For the samples in the latter category, the etch pits

cannot be assumed to extend through the InAs layer, so that only the holes see an antidot

potential. It has therefore been proposed that the electron-hole coupling is essential for the

appearance of commensurability features in these samples; also, the probability of magnetic

breakdown may be a�ected by the changing size of the gaps in momentum space as the in-

plane �eld is varied. A theoretical model that can explain all observations has, however, not

been achieved.

A single device, which a er an additional etch step has the thinnest GaSb cap of the

samples showing commensurability e�ects, shows further structure of unknown origin a-

bove the fundamental peak. ¿e temperature dependence di�ers, with features disappearing

between 2�5 and 4�5K, and the strongest peak in this region moves to lower perpendicular
�elds as the parallel �eld component is increased.

Although lao can be used to modify GaSb surfaces with high resolution, the method

cannot be used to impose an antidot potential on the mobile electrons and holes in typical

InAs–GaSb dhets. In order to maintain an electron mean free path ℓf A a and avoid full

depletion of the hole gas, a minimumGaSb cap depth exceeding the maximum anodization

depth is required. While the sensitivity of the carrier gases to the Fermi level pinning at the
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free surface implies that a partial removal of the cap layer can be su�cient to create a sig-

ni�cant modulation potential, which has been demonstrated in prior experiments on large

chemically etched antidots, afm lithography cannot capitalize on this phenomenon. ¿e

probable explanation is that the surface states created by direct anodization or by careful re-

moval of the anodic oxide and reoxidation in air (which preserves the lithographic pattern)

are signi�cantly di�erent from those created by the wet etch used earlier and do not set up

a su�ciently strong potential at the active layer. ¿is idea is corroborated by the fact that

pits etched using rie and allowed to form a native oxide in air also can remove a signi�c-

ant percentage of the cap thickness without generating an e�ect on the magnetotransport

properties.
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